AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.699 | 0.413 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.661 |
Model: | OLS | Adj. R-squared: | 0.608 |
Method: | Least Squares | F-statistic: | 12.36 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000103 |
Time: | 04:48:30 | Log-Likelihood: | -100.66 |
No. Observations: | 23 | AIC: | 209.3 |
Df Residuals: | 19 | BIC: | 213.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 110.8682 | 86.308 | 1.285 | 0.214 | -69.777 291.513 |
C(dose)[T.1] | 32.7963 | 113.037 | 0.290 | 0.775 | -203.792 269.385 |
expression | -8.3797 | 12.732 | -0.658 | 0.518 | -35.029 18.270 |
expression:C(dose)[T.1] | 2.1960 | 17.807 | 0.123 | 0.903 | -35.075 39.467 |
Omnibus: | 0.430 | Durbin-Watson: | 1.874 |
Prob(Omnibus): | 0.806 | Jarque-Bera (JB): | 0.544 |
Skew: | 0.047 | Prob(JB): | 0.762 |
Kurtosis: | 2.253 | Cond. No. | 218. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.661 |
Model: | OLS | Adj. R-squared: | 0.627 |
Method: | Least Squares | F-statistic: | 19.49 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.01e-05 |
Time: | 04:48:30 | Log-Likelihood: | -100.67 |
No. Observations: | 23 | AIC: | 207.3 |
Df Residuals: | 20 | BIC: | 210.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 103.2767 | 58.988 | 1.751 | 0.095 | -19.770 226.324 |
C(dose)[T.1] | 46.6570 | 11.753 | 3.970 | 0.001 | 22.140 71.174 |
expression | -7.2570 | 8.679 | -0.836 | 0.413 | -25.362 10.848 |
Omnibus: | 0.381 | Durbin-Watson: | 1.892 |
Prob(Omnibus): | 0.827 | Jarque-Bera (JB): | 0.519 |
Skew: | 0.062 | Prob(JB): | 0.772 |
Kurtosis: | 2.275 | Cond. No. | 90.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:48:30 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.394 |
Model: | OLS | Adj. R-squared: | 0.365 |
Method: | Least Squares | F-statistic: | 13.64 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00135 |
Time: | 04:48:30 | Log-Likelihood: | -107.35 |
No. Observations: | 23 | AIC: | 218.7 |
Df Residuals: | 21 | BIC: | 221.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 273.6370 | 52.809 | 5.182 | 0.000 | 163.814 383.460 |
expression | -30.6772 | 8.307 | -3.693 | 0.001 | -47.952 -13.402 |
Omnibus: | 2.248 | Durbin-Watson: | 2.236 |
Prob(Omnibus): | 0.325 | Jarque-Bera (JB): | 1.305 |
Skew: | 0.581 | Prob(JB): | 0.521 |
Kurtosis: | 3.102 | Cond. No. | 61.2 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.001 | 0.972 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.489 |
Model: | OLS | Adj. R-squared: | 0.350 |
Method: | Least Squares | F-statistic: | 3.514 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0527 |
Time: | 04:48:30 | Log-Likelihood: | -70.259 |
No. Observations: | 15 | AIC: | 148.5 |
Df Residuals: | 11 | BIC: | 151.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -37.0755 | 188.412 | -0.197 | 0.848 | -451.767 377.617 |
C(dose)[T.1] | 337.2978 | 308.433 | 1.094 | 0.298 | -341.558 1016.153 |
expression | 13.3857 | 24.088 | 0.556 | 0.590 | -39.631 66.403 |
expression:C(dose)[T.1] | -36.0892 | 38.604 | -0.935 | 0.370 | -121.057 48.879 |
Omnibus: | 2.298 | Durbin-Watson: | 0.704 |
Prob(Omnibus): | 0.317 | Jarque-Bera (JB): | 1.478 |
Skew: | -0.541 | Prob(JB): | 0.478 |
Kurtosis: | 1.908 | Cond. No. | 401. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.886 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 04:48:30 | Log-Likelihood: | -70.832 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 72.6208 | 146.635 | 0.495 | 0.629 | -246.869 392.111 |
C(dose)[T.1] | 49.3824 | 16.587 | 2.977 | 0.012 | 13.243 85.522 |
expression | -0.6651 | 18.724 | -0.036 | 0.972 | -41.462 40.132 |
Omnibus: | 2.712 | Durbin-Watson: | 0.813 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.889 |
Skew: | -0.845 | Prob(JB): | 0.389 |
Kurtosis: | 2.595 | Cond. No. | 152. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:48:30 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.042 |
Model: | OLS | Adj. R-squared: | -0.032 |
Method: | Least Squares | F-statistic: | 0.5658 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.465 |
Time: | 04:48:30 | Log-Likelihood: | -74.981 |
No. Observations: | 15 | AIC: | 154.0 |
Df Residuals: | 13 | BIC: | 155.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -41.0349 | 179.359 | -0.229 | 0.823 | -428.516 346.447 |
expression | 16.9303 | 22.508 | 0.752 | 0.465 | -31.696 65.557 |
Omnibus: | 1.513 | Durbin-Watson: | 1.421 |
Prob(Omnibus): | 0.469 | Jarque-Bera (JB): | 0.864 |
Skew: | 0.127 | Prob(JB): | 0.649 |
Kurtosis: | 1.852 | Cond. No. | 146. |