AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.108 | 0.056 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.747 |
Model: | OLS | Adj. R-squared: | 0.707 |
Method: | Least Squares | F-statistic: | 18.71 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.75e-06 |
Time: | 04:47:14 | Log-Likelihood: | -97.295 |
No. Observations: | 23 | AIC: | 202.6 |
Df Residuals: | 19 | BIC: | 207.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 381.8839 | 318.148 | 1.200 | 0.245 | -284.006 1047.774 |
C(dose)[T.1] | 1144.0676 | 648.391 | 1.764 | 0.094 | -213.031 2501.166 |
expression | -28.6475 | 27.811 | -1.030 | 0.316 | -86.856 29.561 |
expression:C(dose)[T.1] | -97.0877 | 57.284 | -1.695 | 0.106 | -216.984 22.808 |
Omnibus: | 0.676 | Durbin-Watson: | 2.046 |
Prob(Omnibus): | 0.713 | Jarque-Bera (JB): | 0.675 |
Skew: | -0.121 | Prob(JB): | 0.714 |
Kurtosis: | 2.196 | Cond. No. | 2.27e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.709 |
Model: | OLS | Adj. R-squared: | 0.680 |
Method: | Least Squares | F-statistic: | 24.35 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.38e-06 |
Time: | 04:47:14 | Log-Likelihood: | -98.915 |
No. Observations: | 23 | AIC: | 203.8 |
Df Residuals: | 20 | BIC: | 207.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 643.6313 | 290.880 | 2.213 | 0.039 | 36.867 1250.396 |
C(dose)[T.1] | 45.2309 | 8.933 | 5.063 | 0.000 | 26.596 63.865 |
expression | -51.5311 | 25.426 | -2.027 | 0.056 | -104.569 1.507 |
Omnibus: | 1.286 | Durbin-Watson: | 2.235 |
Prob(Omnibus): | 0.526 | Jarque-Bera (JB): | 1.003 |
Skew: | -0.258 | Prob(JB): | 0.606 |
Kurtosis: | 2.117 | Cond. No. | 836. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:47:14 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.336 |
Model: | OLS | Adj. R-squared: | 0.304 |
Method: | Least Squares | F-statistic: | 10.61 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00377 |
Time: | 04:47:14 | Log-Likelihood: | -108.40 |
No. Observations: | 23 | AIC: | 220.8 |
Df Residuals: | 21 | BIC: | 223.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1320.2144 | 380.877 | 3.466 | 0.002 | 528.137 2112.292 |
expression | -109.1701 | 33.515 | -3.257 | 0.004 | -178.869 -39.472 |
Omnibus: | 1.148 | Durbin-Watson: | 2.707 |
Prob(Omnibus): | 0.563 | Jarque-Bera (JB): | 0.999 |
Skew: | -0.463 | Prob(JB): | 0.607 |
Kurtosis: | 2.570 | Cond. No. | 742. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.641 | 0.439 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.480 |
Model: | OLS | Adj. R-squared: | 0.338 |
Method: | Least Squares | F-statistic: | 3.387 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0577 |
Time: | 04:47:14 | Log-Likelihood: | -70.393 |
No. Observations: | 15 | AIC: | 148.8 |
Df Residuals: | 11 | BIC: | 151.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 344.6373 | 373.903 | 0.922 | 0.376 | -478.318 1167.593 |
C(dose)[T.1] | -96.7311 | 538.513 | -0.180 | 0.861 | -1281.990 1088.528 |
expression | -26.9589 | 36.345 | -0.742 | 0.474 | -106.953 53.036 |
expression:C(dose)[T.1] | 14.1951 | 52.341 | 0.271 | 0.791 | -101.006 129.396 |
Omnibus: | 2.171 | Durbin-Watson: | 0.756 |
Prob(Omnibus): | 0.338 | Jarque-Bera (JB): | 1.545 |
Skew: | -0.752 | Prob(JB): | 0.462 |
Kurtosis: | 2.542 | Cond. No. | 926. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.477 |
Model: | OLS | Adj. R-squared: | 0.390 |
Method: | Least Squares | F-statistic: | 5.466 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0205 |
Time: | 04:47:14 | Log-Likelihood: | -70.443 |
No. Observations: | 15 | AIC: | 146.9 |
Df Residuals: | 12 | BIC: | 149.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 274.2563 | 258.582 | 1.061 | 0.310 | -289.145 837.657 |
C(dose)[T.1] | 49.2536 | 15.336 | 3.212 | 0.007 | 15.840 82.667 |
expression | -20.1142 | 25.124 | -0.801 | 0.439 | -74.854 34.626 |
Omnibus: | 2.387 | Durbin-Watson: | 0.758 |
Prob(Omnibus): | 0.303 | Jarque-Bera (JB): | 1.689 |
Skew: | -0.791 | Prob(JB): | 0.430 |
Kurtosis: | 2.554 | Cond. No. | 351. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:47:14 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.027 |
Model: | OLS | Adj. R-squared: | -0.048 |
Method: | Least Squares | F-statistic: | 0.3596 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.559 |
Time: | 04:47:14 | Log-Likelihood: | -75.095 |
No. Observations: | 15 | AIC: | 154.2 |
Df Residuals: | 13 | BIC: | 155.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 296.6640 | 338.663 | 0.876 | 0.397 | -434.973 1028.301 |
expression | -19.7388 | 32.916 | -0.600 | 0.559 | -90.850 51.372 |
Omnibus: | 2.309 | Durbin-Watson: | 1.688 |
Prob(Omnibus): | 0.315 | Jarque-Bera (JB): | 1.038 |
Skew: | 0.141 | Prob(JB): | 0.595 |
Kurtosis: | 1.742 | Cond. No. | 351. |