AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.140 0.159 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.729
Model: OLS Adj. R-squared: 0.687
Method: Least Squares F-statistic: 17.07
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.27e-05
Time: 22:45:16 Log-Likelihood: -98.075
No. Observations: 23 AIC: 204.2
Df Residuals: 19 BIC: 208.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 89.7946 84.615 1.061 0.302 -87.307 266.896
C(dose)[T.1] -131.4158 106.155 -1.238 0.231 -353.600 90.769
expression -5.6796 13.476 -0.421 0.678 -33.886 22.527
expression:C(dose)[T.1] 31.3901 17.399 1.804 0.087 -5.026 67.806
Omnibus: 0.555 Durbin-Watson: 1.774
Prob(Omnibus): 0.758 Jarque-Bera (JB): 0.485
Skew: 0.315 Prob(JB): 0.785
Kurtosis: 2.669 Cond. No. 227.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.683
Model: OLS Adj. R-squared: 0.651
Method: Least Squares F-statistic: 21.54
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.03e-05
Time: 22:45:16 Log-Likelihood: -99.894
No. Observations: 23 AIC: 205.8
Df Residuals: 20 BIC: 209.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -28.2009 56.632 -0.498 0.624 -146.334 89.932
C(dose)[T.1] 59.4385 9.321 6.377 0.000 39.996 78.881
expression 13.1525 8.992 1.463 0.159 -5.604 31.909
Omnibus: 1.096 Durbin-Watson: 1.999
Prob(Omnibus): 0.578 Jarque-Bera (JB): 0.832
Skew: -0.109 Prob(JB): 0.660
Kurtosis: 2.094 Cond. No. 85.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:45:16 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.038
Model: OLS Adj. R-squared: -0.007
Method: Least Squares F-statistic: 0.8375
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.370
Time: 22:45:16 Log-Likelihood: -112.65
No. Observations: 23 AIC: 229.3
Df Residuals: 21 BIC: 231.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 155.3110 82.903 1.873 0.075 -17.096 327.718
expression -12.5076 13.667 -0.915 0.370 -40.930 15.914
Omnibus: 2.632 Durbin-Watson: 2.280
Prob(Omnibus): 0.268 Jarque-Bera (JB): 1.896
Skew: 0.527 Prob(JB): 0.387
Kurtosis: 2.068 Cond. No. 73.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.478 0.503 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.470
Model: OLS Adj. R-squared: 0.326
Method: Least Squares F-statistic: 3.256
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0635
Time: 22:45:16 Log-Likelihood: -70.534
No. Observations: 15 AIC: 149.1
Df Residuals: 11 BIC: 151.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -33.4054 188.745 -0.177 0.863 -448.831 382.021
C(dose)[T.1] 81.5623 254.533 0.320 0.755 -478.660 641.785
expression 13.0720 24.421 0.535 0.603 -40.678 66.822
expression:C(dose)[T.1] -3.3431 34.391 -0.097 0.924 -79.037 72.351
Omnibus: 2.931 Durbin-Watson: 0.670
Prob(Omnibus): 0.231 Jarque-Bera (JB): 2.048
Skew: -0.883 Prob(JB): 0.359
Kurtosis: 2.598 Cond. No. 317.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.470
Model: OLS Adj. R-squared: 0.382
Method: Least Squares F-statistic: 5.318
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0222
Time: 22:45:17 Log-Likelihood: -70.540
No. Observations: 15 AIC: 147.1
Df Residuals: 12 BIC: 149.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -20.4022 127.544 -0.160 0.876 -298.297 257.493
C(dose)[T.1] 56.8954 19.033 2.989 0.011 15.425 98.365
expression 11.3863 16.470 0.691 0.503 -24.499 47.271
Omnibus: 2.948 Durbin-Watson: 0.663
Prob(Omnibus): 0.229 Jarque-Bera (JB): 2.052
Skew: -0.884 Prob(JB): 0.359
Kurtosis: 2.608 Cond. No. 125.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:45:17 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.075
Model: OLS Adj. R-squared: 0.004
Method: Least Squares F-statistic: 1.056
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.323
Time: 22:45:17 Log-Likelihood: -74.714
No. Observations: 15 AIC: 153.4
Df Residuals: 13 BIC: 154.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 221.7572 125.017 1.774 0.100 -48.325 491.839
expression -17.4198 16.950 -1.028 0.323 -54.038 19.198
Omnibus: 0.014 Durbin-Watson: 1.567
Prob(Omnibus): 0.993 Jarque-Bera (JB): 0.230
Skew: 0.003 Prob(JB): 0.891
Kurtosis: 2.394 Cond. No. 96.1