AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
6.858 0.016 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.774
Model: OLS Adj. R-squared: 0.738
Method: Least Squares F-statistic: 21.68
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.37e-06
Time: 04:44:11 Log-Likelihood: -96.007
No. Observations: 23 AIC: 200.0
Df Residuals: 19 BIC: 204.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 25.4846 31.423 0.811 0.427 -40.284 91.253
C(dose)[T.1] -29.7962 48.098 -0.619 0.543 -130.467 70.875
expression 4.7988 5.183 0.926 0.366 -6.049 15.647
expression:C(dose)[T.1] 13.5113 7.853 1.721 0.102 -2.925 29.947
Omnibus: 0.347 Durbin-Watson: 1.377
Prob(Omnibus): 0.841 Jarque-Bera (JB): 0.507
Skew: 0.161 Prob(JB): 0.776
Kurtosis: 2.348 Cond. No. 105.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.739
Model: OLS Adj. R-squared: 0.713
Method: Least Squares F-statistic: 28.27
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.49e-06
Time: 04:44:11 Log-Likelihood: -97.672
No. Observations: 23 AIC: 201.3
Df Residuals: 20 BIC: 204.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -9.7456 24.976 -0.390 0.701 -61.845 42.354
C(dose)[T.1] 52.0185 7.585 6.858 0.000 36.197 67.840
expression 10.6846 4.080 2.619 0.016 2.174 19.195
Omnibus: 0.592 Durbin-Watson: 1.860
Prob(Omnibus): 0.744 Jarque-Bera (JB): 0.656
Skew: 0.180 Prob(JB): 0.720
Kurtosis: 2.255 Cond. No. 41.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:44:11 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.124
Model: OLS Adj. R-squared: 0.082
Method: Least Squares F-statistic: 2.973
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0993
Time: 04:44:11 Log-Likelihood: -111.58
No. Observations: 23 AIC: 227.2
Df Residuals: 21 BIC: 229.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 3.9029 44.483 0.088 0.931 -88.605 96.411
expression 12.5424 7.274 1.724 0.099 -2.584 27.669
Omnibus: 6.034 Durbin-Watson: 2.466
Prob(Omnibus): 0.049 Jarque-Bera (JB): 1.741
Skew: 0.009 Prob(JB): 0.419
Kurtosis: 1.652 Cond. No. 41.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.328 0.577 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.508
Model: OLS Adj. R-squared: 0.373
Method: Least Squares F-statistic: 3.780
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0437
Time: 04:44:11 Log-Likelihood: -69.986
No. Observations: 15 AIC: 148.0
Df Residuals: 11 BIC: 150.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 178.8441 103.614 1.726 0.112 -49.210 406.898
C(dose)[T.1] -103.6084 150.665 -0.688 0.506 -435.220 228.003
expression -14.2740 13.195 -1.082 0.302 -43.315 14.767
expression:C(dose)[T.1] 20.1069 20.236 0.994 0.342 -24.431 64.645
Omnibus: 1.772 Durbin-Watson: 0.813
Prob(Omnibus): 0.412 Jarque-Bera (JB): 1.269
Skew: -0.674 Prob(JB): 0.530
Kurtosis: 2.540 Cond. No. 190.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.463
Model: OLS Adj. R-squared: 0.374
Method: Least Squares F-statistic: 5.182
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0239
Time: 04:44:11 Log-Likelihood: -70.631
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 112.1152 78.863 1.422 0.181 -59.714 283.944
C(dose)[T.1] 45.1333 17.073 2.643 0.021 7.933 82.333
expression -5.7250 9.999 -0.573 0.577 -27.510 16.060
Omnibus: 3.767 Durbin-Watson: 0.735
Prob(Omnibus): 0.152 Jarque-Bera (JB): 2.349
Skew: -0.968 Prob(JB): 0.309
Kurtosis: 2.909 Cond. No. 78.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:44:11 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.151
Model: OLS Adj. R-squared: 0.086
Method: Least Squares F-statistic: 2.312
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.152
Time: 04:44:11 Log-Likelihood: -74.073
No. Observations: 15 AIC: 152.1
Df Residuals: 13 BIC: 153.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 217.7742 82.163 2.651 0.020 40.272 395.277
expression -16.7104 10.991 -1.520 0.152 -40.454 7.034
Omnibus: 1.100 Durbin-Watson: 1.613
Prob(Omnibus): 0.577 Jarque-Bera (JB): 0.760
Skew: 0.136 Prob(JB): 0.684
Kurtosis: 1.932 Cond. No. 66.8