AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.310 0.584 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.604
Method: Least Squares F-statistic: 12.18
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000113
Time: 23:01:29 Log-Likelihood: -100.77
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 153.6914 145.428 1.057 0.304 -150.693 458.076
C(dose)[T.1] -29.2880 181.854 -0.161 0.874 -409.912 351.336
expression -11.5392 16.853 -0.685 0.502 -46.814 23.735
expression:C(dose)[T.1] 9.4844 21.460 0.442 0.664 -35.432 54.401
Omnibus: 0.354 Durbin-Watson: 1.969
Prob(Omnibus): 0.838 Jarque-Bera (JB): 0.349
Skew: 0.250 Prob(JB): 0.840
Kurtosis: 2.661 Cond. No. 479.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 18.94
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.43e-05
Time: 23:01:30 Log-Likelihood: -100.89
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 103.2610 88.327 1.169 0.256 -80.987 287.509
C(dose)[T.1] 50.9640 9.691 5.259 0.000 30.749 71.179
expression -5.6897 10.221 -0.557 0.584 -27.011 15.632
Omnibus: 0.311 Durbin-Watson: 1.954
Prob(Omnibus): 0.856 Jarque-Bera (JB): 0.416
Skew: 0.232 Prob(JB): 0.812
Kurtosis: 2.533 Cond. No. 174.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:01:30 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.177
Model: OLS Adj. R-squared: 0.137
Method: Least Squares F-statistic: 4.501
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0459
Time: 23:01:30 Log-Likelihood: -110.87
No. Observations: 23 AIC: 225.7
Df Residuals: 21 BIC: 228.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 326.7946 116.641 2.802 0.011 84.227 569.362
expression -29.3376 13.828 -2.122 0.046 -58.094 -0.581
Omnibus: 3.104 Durbin-Watson: 2.496
Prob(Omnibus): 0.212 Jarque-Bera (JB): 2.489
Skew: 0.790 Prob(JB): 0.288
Kurtosis: 2.678 Cond. No. 152.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.638 0.225 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.538
Model: OLS Adj. R-squared: 0.412
Method: Least Squares F-statistic: 4.272
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0314
Time: 23:01:30 Log-Likelihood: -69.506
No. Observations: 15 AIC: 147.0
Df Residuals: 11 BIC: 149.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 124.2043 157.411 0.789 0.447 -222.254 470.663
C(dose)[T.1] 214.3679 222.572 0.963 0.356 -275.510 704.246
expression -6.5415 18.092 -0.362 0.725 -46.362 33.279
expression:C(dose)[T.1] -19.0014 25.571 -0.743 0.473 -75.282 37.280
Omnibus: 1.864 Durbin-Watson: 0.880
Prob(Omnibus): 0.394 Jarque-Bera (JB): 0.979
Skew: -0.196 Prob(JB): 0.613
Kurtosis: 1.812 Cond. No. 348.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.515
Model: OLS Adj. R-squared: 0.434
Method: Least Squares F-statistic: 6.370
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0130
Time: 23:01:30 Log-Likelihood: -69.874
No. Observations: 15 AIC: 145.7
Df Residuals: 12 BIC: 147.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 206.7621 109.410 1.890 0.083 -31.623 445.147
C(dose)[T.1] 49.3558 14.765 3.343 0.006 17.186 81.526
expression -16.0536 12.545 -1.280 0.225 -43.386 11.279
Omnibus: 3.400 Durbin-Watson: 0.826
Prob(Omnibus): 0.183 Jarque-Bera (JB): 1.299
Skew: -0.248 Prob(JB): 0.522
Kurtosis: 1.647 Cond. No. 131.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:01:30 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.063
Model: OLS Adj. R-squared: -0.009
Method: Least Squares F-statistic: 0.8787
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.366
Time: 23:01:30 Log-Likelihood: -74.810
No. Observations: 15 AIC: 153.6
Df Residuals: 13 BIC: 155.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 230.0143 145.784 1.578 0.139 -84.932 544.961
expression -15.7000 16.748 -0.937 0.366 -51.882 20.482
Omnibus: 0.755 Durbin-Watson: 1.675
Prob(Omnibus): 0.686 Jarque-Bera (JB): 0.664
Skew: 0.173 Prob(JB): 0.717
Kurtosis: 2.029 Cond. No. 131.