AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.008 0.928 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.714
Model: OLS Adj. R-squared: 0.669
Method: Least Squares F-statistic: 15.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.10e-05
Time: 04:55:27 Log-Likelihood: -98.694
No. Observations: 23 AIC: 205.4
Df Residuals: 19 BIC: 209.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 155.2524 82.693 1.877 0.076 -17.827 328.331
C(dose)[T.1] -215.1123 129.294 -1.664 0.113 -485.729 55.504
expression -15.2067 12.416 -1.225 0.236 -41.194 10.781
expression:C(dose)[T.1] 41.3536 19.858 2.083 0.051 -0.209 82.916
Omnibus: 0.060 Durbin-Watson: 1.956
Prob(Omnibus): 0.971 Jarque-Bera (JB): 0.079
Skew: -0.053 Prob(JB): 0.961
Kurtosis: 2.733 Cond. No. 264.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.51
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.82e-05
Time: 04:55:27 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 47.8237 69.814 0.685 0.501 -97.805 193.453
C(dose)[T.1] 53.5699 9.127 5.869 0.000 34.531 72.609
expression 0.9609 10.467 0.092 0.928 -20.873 22.795
Omnibus: 0.320 Durbin-Watson: 1.905
Prob(Omnibus): 0.852 Jarque-Bera (JB): 0.483
Skew: 0.054 Prob(JB): 0.785
Kurtosis: 2.298 Cond. No. 107.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:55:27 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.045
Model: OLS Adj. R-squared: -0.000
Method: Least Squares F-statistic: 0.9896
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.331
Time: 04:55:27 Log-Likelihood: -112.58
No. Observations: 23 AIC: 229.2
Df Residuals: 21 BIC: 231.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 184.8690 105.940 1.745 0.096 -35.446 405.184
expression -16.1056 16.190 -0.995 0.331 -49.776 17.564
Omnibus: 2.434 Durbin-Watson: 2.290
Prob(Omnibus): 0.296 Jarque-Bera (JB): 1.814
Skew: 0.520 Prob(JB): 0.404
Kurtosis: 2.099 Cond. No. 101.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.515 0.037 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.625
Model: OLS Adj. R-squared: 0.523
Method: Least Squares F-statistic: 6.123
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0105
Time: 04:55:27 Log-Likelihood: -67.935
No. Observations: 15 AIC: 143.9
Df Residuals: 11 BIC: 146.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 351.0356 187.033 1.877 0.087 -60.622 762.693
C(dose)[T.1] -21.7296 225.289 -0.096 0.925 -517.588 474.128
expression -38.6687 25.466 -1.518 0.157 -94.718 17.381
expression:C(dose)[T.1] 9.3246 30.776 0.303 0.768 -58.412 77.061
Omnibus: 0.303 Durbin-Watson: 1.728
Prob(Omnibus): 0.859 Jarque-Bera (JB): 0.458
Skew: 0.175 Prob(JB): 0.795
Kurtosis: 2.219 Cond. No. 358.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.622
Model: OLS Adj. R-squared: 0.559
Method: Least Squares F-statistic: 9.887
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00290
Time: 04:55:27 Log-Likelihood: -67.997
No. Observations: 15 AIC: 142.0
Df Residuals: 12 BIC: 144.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 304.2105 101.278 3.004 0.011 83.544 524.877
C(dose)[T.1] 46.4051 13.082 3.547 0.004 17.901 74.909
expression -32.2843 13.748 -2.348 0.037 -62.238 -2.330
Omnibus: 0.333 Durbin-Watson: 1.691
Prob(Omnibus): 0.847 Jarque-Bera (JB): 0.474
Skew: 0.222 Prob(JB): 0.789
Kurtosis: 2.251 Cond. No. 116.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:55:27 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.226
Model: OLS Adj. R-squared: 0.167
Method: Least Squares F-statistic: 3.803
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0731
Time: 04:55:27 Log-Likelihood: -73.375
No. Observations: 15 AIC: 150.8
Df Residuals: 13 BIC: 152.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 361.2519 137.503 2.627 0.021 64.195 658.308
expression -36.7150 18.827 -1.950 0.073 -77.388 3.958
Omnibus: 1.638 Durbin-Watson: 2.244
Prob(Omnibus): 0.441 Jarque-Bera (JB): 1.179
Skew: 0.647 Prob(JB): 0.555
Kurtosis: 2.538 Cond. No. 114.