AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.073 | 0.789 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.678 |
Model: | OLS | Adj. R-squared: | 0.627 |
Method: | Least Squares | F-statistic: | 13.35 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 6.39e-05 |
Time: | 23:03:03 | Log-Likelihood: | -100.07 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 19 | BIC: | 212.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -87.5670 | 179.979 | -0.487 | 0.632 | -464.267 289.133 |
C(dose)[T.1] | 359.5995 | 238.915 | 1.505 | 0.149 | -140.456 859.655 |
expression | 16.5746 | 21.029 | 0.788 | 0.440 | -27.440 60.590 |
expression:C(dose)[T.1] | -35.6800 | 27.835 | -1.282 | 0.215 | -93.939 22.579 |
Omnibus: | 0.102 | Durbin-Watson: | 1.929 |
Prob(Omnibus): | 0.950 | Jarque-Bera (JB): | 0.285 |
Skew: | 0.119 | Prob(JB): | 0.867 |
Kurtosis: | 2.510 | Cond. No. | 647. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.60 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.73e-05 |
Time: | 23:03:03 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 86.6355 | 119.880 | 0.723 | 0.478 | -163.431 336.702 |
C(dose)[T.1] | 53.5482 | 8.788 | 6.093 | 0.000 | 35.216 71.881 |
expression | -3.7910 | 13.997 | -0.271 | 0.789 | -32.988 25.406 |
Omnibus: | 0.324 | Durbin-Watson: | 1.806 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.032 | Prob(JB): | 0.785 |
Kurtosis: | 2.292 | Cond. No. | 239. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 23:03:03 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.001 |
Model: | OLS | Adj. R-squared: | -0.046 |
Method: | Least Squares | F-statistic: | 0.02693 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.871 |
Time: | 23:03:03 | Log-Likelihood: | -113.09 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 47.3397 | 197.434 | 0.240 | 0.813 | -363.247 457.926 |
expression | 3.7734 | 22.995 | 0.164 | 0.871 | -44.046 51.593 |
Omnibus: | 3.211 | Durbin-Watson: | 2.500 |
Prob(Omnibus): | 0.201 | Jarque-Bera (JB): | 1.611 |
Skew: | 0.325 | Prob(JB): | 0.447 |
Kurtosis: | 1.878 | Cond. No. | 238. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.003 | 0.956 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.465 |
Model: | OLS | Adj. R-squared: | 0.319 |
Method: | Least Squares | F-statistic: | 3.190 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0667 |
Time: | 23:03:03 | Log-Likelihood: | -70.606 |
No. Observations: | 15 | AIC: | 149.2 |
Df Residuals: | 11 | BIC: | 152.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -172.6777 | 508.486 | -0.340 | 0.741 | -1291.848 946.492 |
C(dose)[T.1] | 444.4702 | 683.770 | 0.650 | 0.529 | -1060.498 1949.438 |
expression | 27.7955 | 58.848 | 0.472 | 0.646 | -101.729 157.320 |
expression:C(dose)[T.1] | -45.2074 | 78.058 | -0.579 | 0.574 | -217.012 126.597 |
Omnibus: | 4.237 | Durbin-Watson: | 0.930 |
Prob(Omnibus): | 0.120 | Jarque-Bera (JB): | 2.555 |
Skew: | -1.011 | Prob(JB): | 0.279 |
Kurtosis: | 3.041 | Cond. No. | 1.03e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.888 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0280 |
Time: | 23:03:03 | Log-Likelihood: | -70.831 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 49.2796 | 324.801 | 0.152 | 0.882 | -658.400 756.960 |
C(dose)[T.1] | 48.6222 | 18.792 | 2.587 | 0.024 | 7.677 89.567 |
expression | 2.1010 | 37.577 | 0.056 | 0.956 | -79.771 83.973 |
Omnibus: | 2.732 | Durbin-Watson: | 0.806 |
Prob(Omnibus): | 0.255 | Jarque-Bera (JB): | 1.894 |
Skew: | -0.848 | Prob(JB): | 0.388 |
Kurtosis: | 2.606 | Cond. No. | 369. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 23:03:04 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.141 |
Model: | OLS | Adj. R-squared: | 0.075 |
Method: | Least Squares | F-statistic: | 2.142 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.167 |
Time: | 23:03:04 | Log-Likelihood: | -74.156 |
No. Observations: | 15 | AIC: | 152.3 |
Df Residuals: | 13 | BIC: | 153.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -391.5245 | 331.610 | -1.181 | 0.259 | -1107.924 324.875 |
expression | 55.2354 | 37.736 | 1.464 | 0.167 | -26.288 136.759 |
Omnibus: | 0.084 | Durbin-Watson: | 1.292 |
Prob(Omnibus): | 0.959 | Jarque-Bera (JB): | 0.311 |
Skew: | 0.042 | Prob(JB): | 0.856 |
Kurtosis: | 2.300 | Cond. No. | 314. |