AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.032 0.859 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.667
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 12.68
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.81e-05
Time: 04:54:10 Log-Likelihood: -100.47
No. Observations: 23 AIC: 208.9
Df Residuals: 19 BIC: 213.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -15.0620 81.301 -0.185 0.855 -185.228 155.104
C(dose)[T.1] 158.3244 105.583 1.500 0.150 -62.663 379.312
expression 13.1595 15.402 0.854 0.404 -19.077 45.397
expression:C(dose)[T.1] -20.5966 20.790 -0.991 0.334 -64.111 22.918
Omnibus: 1.432 Durbin-Watson: 1.992
Prob(Omnibus): 0.489 Jarque-Bera (JB): 0.939
Skew: 0.109 Prob(JB): 0.625
Kurtosis: 2.034 Cond. No. 168.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.54
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.79e-05
Time: 04:54:10 Log-Likelihood: -101.04
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 44.4422 54.768 0.811 0.427 -69.802 158.686
C(dose)[T.1] 54.1930 9.977 5.432 0.000 33.381 75.005
expression 1.8553 10.341 0.179 0.859 -19.715 23.425
Omnibus: 0.189 Durbin-Watson: 1.880
Prob(Omnibus): 0.910 Jarque-Bera (JB): 0.398
Skew: 0.001 Prob(JB): 0.820
Kurtosis: 2.356 Cond. No. 66.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:54:10 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.133
Model: OLS Adj. R-squared: 0.091
Method: Least Squares F-statistic: 3.215
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0874
Time: 04:54:10 Log-Likelihood: -111.47
No. Observations: 23 AIC: 226.9
Df Residuals: 21 BIC: 229.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 205.8009 70.643 2.913 0.008 58.890 352.712
expression -25.0004 13.944 -1.793 0.087 -53.998 3.998
Omnibus: 0.528 Durbin-Watson: 2.557
Prob(Omnibus): 0.768 Jarque-Bera (JB): 0.627
Skew: 0.199 Prob(JB): 0.731
Kurtosis: 2.296 Cond. No. 55.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.918 0.357 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.615
Model: OLS Adj. R-squared: 0.510
Method: Least Squares F-statistic: 5.856
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0122
Time: 04:54:11 Log-Likelihood: -68.142
No. Observations: 15 AIC: 144.3
Df Residuals: 11 BIC: 147.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 143.5454 150.292 0.955 0.360 -187.246 474.337
C(dose)[T.1] -377.9466 223.867 -1.688 0.119 -870.674 114.781
expression -15.3825 30.305 -0.508 0.622 -82.083 51.318
expression:C(dose)[T.1] 85.4363 44.847 1.905 0.083 -13.272 184.145
Omnibus: 7.498 Durbin-Watson: 1.378
Prob(Omnibus): 0.024 Jarque-Bera (JB): 4.148
Skew: -1.156 Prob(JB): 0.126
Kurtosis: 4.137 Cond. No. 221.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.488
Model: OLS Adj. R-squared: 0.403
Method: Least Squares F-statistic: 5.717
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0180
Time: 04:54:11 Log-Likelihood: -70.280
No. Observations: 15 AIC: 146.6
Df Residuals: 12 BIC: 148.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -49.4963 122.552 -0.404 0.693 -316.514 217.521
C(dose)[T.1] 47.7183 15.248 3.129 0.009 14.495 80.942
expression 23.6295 24.665 0.958 0.357 -30.111 77.370
Omnibus: 4.864 Durbin-Watson: 0.764
Prob(Omnibus): 0.088 Jarque-Bera (JB): 2.992
Skew: -1.093 Prob(JB): 0.224
Kurtosis: 3.093 Cond. No. 84.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:54:11 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.070
Model: OLS Adj. R-squared: -0.001
Method: Least Squares F-statistic: 0.9792
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.340
Time: 04:54:11 Log-Likelihood: -74.755
No. Observations: 15 AIC: 153.5
Df Residuals: 13 BIC: 154.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -62.9540 158.577 -0.397 0.698 -405.538 279.630
expression 31.4397 31.772 0.990 0.340 -37.199 100.078
Omnibus: 0.764 Durbin-Watson: 1.934
Prob(Omnibus): 0.682 Jarque-Bera (JB): 0.620
Skew: -0.435 Prob(JB): 0.733
Kurtosis: 2.514 Cond. No. 84.0