AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.017 0.898 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.671
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 12.93
Date: Tue, 03 Dec 2024 Prob (F-statistic): 7.78e-05
Time: 11:47:40 Log-Likelihood: -100.31
No. Observations: 23 AIC: 208.6
Df Residuals: 19 BIC: 213.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -11.5791 76.227 -0.152 0.881 -171.125 147.967
C(dose)[T.1] 157.5449 92.811 1.697 0.106 -36.712 351.802
expression 9.5801 11.066 0.866 0.397 -13.581 32.741
expression:C(dose)[T.1] -14.9478 13.281 -1.125 0.274 -42.746 12.850
Omnibus: 0.757 Durbin-Watson: 1.581
Prob(Omnibus): 0.685 Jarque-Bera (JB): 0.694
Skew: -0.067 Prob(JB): 0.707
Kurtosis: 2.160 Cond. No. 217.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.52
Date: Tue, 03 Dec 2024 Prob (F-statistic): 2.81e-05
Time: 11:47:40 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 59.6766 42.735 1.396 0.178 -29.466 148.820
C(dose)[T.1] 53.5685 8.947 5.987 0.000 34.905 72.232
expression -0.7963 6.160 -0.129 0.898 -13.646 12.054
Omnibus: 0.391 Durbin-Watson: 1.893
Prob(Omnibus): 0.823 Jarque-Bera (JB): 0.523
Skew: 0.050 Prob(JB): 0.770
Kurtosis: 2.268 Cond. No. 70.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:47:40 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.021
Model: OLS Adj. R-squared: -0.026
Method: Least Squares F-statistic: 0.4472
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.511
Time: 11:47:40 Log-Likelihood: -112.86
No. Observations: 23 AIC: 229.7
Df Residuals: 21 BIC: 232.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 33.6042 69.328 0.485 0.633 -110.570 177.779
expression 6.5819 9.843 0.669 0.511 -13.887 27.051
Omnibus: 1.593 Durbin-Watson: 2.459
Prob(Omnibus): 0.451 Jarque-Bera (JB): 1.353
Skew: 0.448 Prob(JB): 0.508
Kurtosis: 2.220 Cond. No. 69.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.056 0.817 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.477
Model: OLS Adj. R-squared: 0.334
Method: Least Squares F-statistic: 3.339
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0597
Time: 11:47:40 Log-Likelihood: -70.444
No. Observations: 15 AIC: 148.9
Df Residuals: 11 BIC: 151.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 4.3333 141.252 0.031 0.976 -306.560 315.227
C(dose)[T.1] 174.1140 173.262 1.005 0.337 -207.234 555.462
expression 9.5302 21.262 0.448 0.663 -37.267 56.327
expression:C(dose)[T.1] -19.2707 26.439 -0.729 0.481 -77.463 38.921
Omnibus: 2.348 Durbin-Watson: 0.878
Prob(Omnibus): 0.309 Jarque-Bera (JB): 1.801
Skew: -0.772 Prob(JB): 0.406
Kurtosis: 2.293 Cond. No. 205.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 4.936
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0273
Time: 11:47:40 Log-Likelihood: -70.798
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 86.8440 82.816 1.049 0.315 -93.596 267.284
C(dose)[T.1] 48.3938 16.065 3.012 0.011 13.391 83.396
expression -2.9326 12.388 -0.237 0.817 -29.924 24.059
Omnibus: 2.221 Durbin-Watson: 0.846
Prob(Omnibus): 0.329 Jarque-Bera (JB): 1.665
Skew: -0.762 Prob(JB): 0.435
Kurtosis: 2.416 Cond. No. 70.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:47:40 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.036
Model: OLS Adj. R-squared: -0.038
Method: Least Squares F-statistic: 0.4915
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.496
Time: 11:47:40 Log-Likelihood: -75.022
No. Observations: 15 AIC: 154.0
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 163.6489 100.322 1.631 0.127 -53.083 380.381
expression -10.8087 15.418 -0.701 0.496 -44.117 22.500
Omnibus: 0.680 Durbin-Watson: 1.549
Prob(Omnibus): 0.712 Jarque-Bera (JB): 0.607
Skew: 0.025 Prob(JB): 0.738
Kurtosis: 2.016 Cond. No. 67.0