AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.190 0.668 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.603
Method: Least Squares F-statistic: 12.15
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000114
Time: 04:51:36 Log-Likelihood: -100.79
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 68.6098 105.114 0.653 0.522 -151.396 288.616
C(dose)[T.1] -17.0321 134.659 -0.126 0.901 -298.876 264.812
expression -2.2499 16.393 -0.137 0.892 -36.561 32.061
expression:C(dose)[T.1] 11.2503 21.234 0.530 0.602 -33.193 55.693
Omnibus: 1.047 Durbin-Watson: 1.876
Prob(Omnibus): 0.592 Jarque-Bera (JB): 0.887
Skew: 0.229 Prob(JB): 0.642
Kurtosis: 2.153 Cond. No. 266.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.76
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.58e-05
Time: 04:51:36 Log-Likelihood: -100.95
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 25.6869 65.762 0.391 0.700 -111.489 162.863
C(dose)[T.1] 54.1515 8.927 6.066 0.000 35.531 72.772
expression 4.4557 10.230 0.436 0.668 -16.884 25.795
Omnibus: 0.717 Durbin-Watson: 1.910
Prob(Omnibus): 0.699 Jarque-Bera (JB): 0.707
Skew: 0.156 Prob(JB): 0.702
Kurtosis: 2.200 Cond. No. 98.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:51:36 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.013
Model: OLS Adj. R-squared: -0.034
Method: Least Squares F-statistic: 0.2696
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.609
Time: 04:51:36 Log-Likelihood: -112.96
No. Observations: 23 AIC: 229.9
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 133.6533 104.117 1.284 0.213 -82.870 350.176
expression -8.5427 16.452 -0.519 0.609 -42.756 25.670
Omnibus: 3.908 Durbin-Watson: 2.484
Prob(Omnibus): 0.142 Jarque-Bera (JB): 1.673
Skew: 0.283 Prob(JB): 0.433
Kurtosis: 1.806 Cond. No. 94.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.089 0.317 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.501
Model: OLS Adj. R-squared: 0.365
Method: Least Squares F-statistic: 3.683
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0468
Time: 04:51:36 Log-Likelihood: -70.085
No. Observations: 15 AIC: 148.2
Df Residuals: 11 BIC: 151.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 215.8378 146.401 1.474 0.168 -106.388 538.063
C(dose)[T.1] -40.9134 223.300 -0.183 0.858 -532.393 450.566
expression -19.4830 19.161 -1.017 0.331 -61.655 22.689
expression:C(dose)[T.1] 11.4035 30.182 0.378 0.713 -55.027 77.834
Omnibus: 2.527 Durbin-Watson: 0.835
Prob(Omnibus): 0.283 Jarque-Bera (JB): 1.812
Skew: -0.818 Prob(JB): 0.404
Kurtosis: 2.527 Cond. No. 275.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.495
Model: OLS Adj. R-squared: 0.410
Method: Least Squares F-statistic: 5.873
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0167
Time: 04:51:36 Log-Likelihood: -70.182
No. Observations: 15 AIC: 146.4
Df Residuals: 12 BIC: 148.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 180.8302 109.225 1.656 0.124 -57.150 418.810
C(dose)[T.1] 43.2166 16.123 2.680 0.020 8.087 78.346
expression -14.8872 14.266 -1.044 0.317 -45.970 16.195
Omnibus: 2.908 Durbin-Watson: 0.754
Prob(Omnibus): 0.234 Jarque-Bera (JB): 2.133
Skew: -0.885 Prob(JB): 0.344
Kurtosis: 2.468 Cond. No. 110.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:51:36 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.192
Model: OLS Adj. R-squared: 0.130
Method: Least Squares F-statistic: 3.091
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.102
Time: 04:51:36 Log-Likelihood: -73.700
No. Observations: 15 AIC: 151.4
Df Residuals: 13 BIC: 152.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 304.4875 120.269 2.532 0.025 44.663 564.312
expression -28.4772 16.199 -1.758 0.102 -63.472 6.518
Omnibus: 5.678 Durbin-Watson: 1.722
Prob(Omnibus): 0.058 Jarque-Bera (JB): 1.518
Skew: 0.163 Prob(JB): 0.468
Kurtosis: 1.476 Cond. No. 99.5