AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.187 0.670 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.676
Model: OLS Adj. R-squared: 0.625
Method: Least Squares F-statistic: 13.22
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.80e-05
Time: 04:59:15 Log-Likelihood: -100.14
No. Observations: 23 AIC: 208.3
Df Residuals: 19 BIC: 212.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 28.1385 53.164 0.529 0.603 -83.134 139.411
C(dose)[T.1] 146.1963 78.738 1.857 0.079 -18.605 310.998
expression 5.0795 10.293 0.494 0.627 -16.463 26.622
expression:C(dose)[T.1] -17.6645 14.978 -1.179 0.253 -49.013 13.684
Omnibus: 0.173 Durbin-Watson: 1.841
Prob(Omnibus): 0.917 Jarque-Bera (JB): 0.378
Skew: -0.107 Prob(JB): 0.828
Kurtosis: 2.410 Cond. No. 127.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.76
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.58e-05
Time: 04:59:15 Log-Likelihood: -100.96
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 70.9536 39.217 1.809 0.085 -10.851 152.759
C(dose)[T.1] 53.9070 8.828 6.106 0.000 35.492 72.322
expression -3.2627 7.550 -0.432 0.670 -19.012 12.486
Omnibus: 0.214 Durbin-Watson: 1.918
Prob(Omnibus): 0.898 Jarque-Bera (JB): 0.415
Skew: 0.077 Prob(JB): 0.813
Kurtosis: 2.360 Cond. No. 49.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:59:15 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.043
Method: Least Squares F-statistic: 0.08637
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.772
Time: 04:59:15 Log-Likelihood: -113.06
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 60.8170 64.714 0.940 0.358 -73.763 195.397
expression 3.6236 12.330 0.294 0.772 -22.018 29.265
Omnibus: 2.804 Durbin-Watson: 2.454
Prob(Omnibus): 0.246 Jarque-Bera (JB): 1.524
Skew: 0.326 Prob(JB): 0.467
Kurtosis: 1.921 Cond. No. 48.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.061 0.323 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.701
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 8.589
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00320
Time: 04:59:15 Log-Likelihood: -66.250
No. Observations: 15 AIC: 140.5
Df Residuals: 11 BIC: 143.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 73.1659 40.850 1.791 0.101 -16.744 163.075
C(dose)[T.1] -209.1827 92.952 -2.250 0.046 -413.768 -4.598
expression -1.3388 9.306 -0.144 0.888 -21.822 19.144
expression:C(dose)[T.1] 55.3916 20.064 2.761 0.019 11.230 99.553
Omnibus: 2.462 Durbin-Watson: 1.695
Prob(Omnibus): 0.292 Jarque-Bera (JB): 1.250
Skew: -0.707 Prob(JB): 0.535
Kurtosis: 3.037 Cond. No. 88.3

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.494
Model: OLS Adj. R-squared: 0.409
Method: Least Squares F-statistic: 5.847
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0169
Time: 04:59:15 Log-Likelihood: -70.198
No. Observations: 15 AIC: 146.4
Df Residuals: 12 BIC: 148.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 22.1002 45.371 0.487 0.635 -76.754 120.954
C(dose)[T.1] 45.0851 15.606 2.889 0.014 11.082 79.088
expression 10.5776 10.271 1.030 0.323 -11.800 32.955
Omnibus: 1.823 Durbin-Watson: 0.856
Prob(Omnibus): 0.402 Jarque-Bera (JB): 1.303
Skew: -0.685 Prob(JB): 0.521
Kurtosis: 2.541 Cond. No. 29.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:59:15 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.141
Model: OLS Adj. R-squared: 0.075
Method: Least Squares F-statistic: 2.139
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.167
Time: 04:59:15 Log-Likelihood: -74.158
No. Observations: 15 AIC: 152.3
Df Residuals: 13 BIC: 153.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 12.0484 56.593 0.213 0.835 -110.212 134.309
expression 18.1672 12.421 1.463 0.167 -8.667 45.002
Omnibus: 0.612 Durbin-Watson: 1.594
Prob(Omnibus): 0.736 Jarque-Bera (JB): 0.638
Skew: -0.262 Prob(JB): 0.727
Kurtosis: 2.137 Cond. No. 28.7