AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.528 0.476 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.670
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 12.89
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.96e-05
Time: 03:52:57 Log-Likelihood: -100.34
No. Observations: 23 AIC: 208.7
Df Residuals: 19 BIC: 213.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 44.0246 61.618 0.714 0.484 -84.944 172.993
C(dose)[T.1] -38.9608 111.958 -0.348 0.732 -273.292 195.371
expression 1.4180 8.539 0.166 0.870 -16.454 19.290
expression:C(dose)[T.1] 13.6635 16.165 0.845 0.408 -20.169 47.496
Omnibus: 1.056 Durbin-Watson: 2.026
Prob(Omnibus): 0.590 Jarque-Bera (JB): 0.948
Skew: 0.298 Prob(JB): 0.622
Kurtosis: 2.204 Cond. No. 218.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.25
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.18e-05
Time: 03:52:57 Log-Likelihood: -100.76
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 16.6429 52.041 0.320 0.752 -91.912 125.198
C(dose)[T.1] 55.3581 9.092 6.089 0.000 36.392 74.324
expression 5.2308 7.198 0.727 0.476 -9.785 20.246
Omnibus: 1.436 Durbin-Watson: 1.818
Prob(Omnibus): 0.488 Jarque-Bera (JB): 0.938
Skew: 0.104 Prob(JB): 0.626
Kurtosis: 2.033 Cond. No. 86.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:52:57 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.024
Model: OLS Adj. R-squared: -0.022
Method: Least Squares F-statistic: 0.5237
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.477
Time: 03:52:57 Log-Likelihood: -112.82
No. Observations: 23 AIC: 229.6
Df Residuals: 21 BIC: 231.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 136.9206 79.369 1.725 0.099 -28.137 301.978
expression -8.1757 11.298 -0.724 0.477 -31.671 15.320
Omnibus: 3.197 Durbin-Watson: 2.295
Prob(Omnibus): 0.202 Jarque-Bera (JB): 1.549
Skew: 0.290 Prob(JB): 0.461
Kurtosis: 1.868 Cond. No. 79.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.007 0.937 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.467
Model: OLS Adj. R-squared: 0.321
Method: Least Squares F-statistic: 3.207
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0658
Time: 03:52:57 Log-Likelihood: -70.587
No. Observations: 15 AIC: 149.2
Df Residuals: 11 BIC: 152.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 91.6858 90.073 1.018 0.331 -106.565 289.936
C(dose)[T.1] -50.5332 166.362 -0.304 0.767 -416.694 315.628
expression -3.5473 13.058 -0.272 0.791 -32.288 25.194
expression:C(dose)[T.1] 13.9814 23.283 0.600 0.560 -37.264 65.227
Omnibus: 2.187 Durbin-Watson: 0.677
Prob(Omnibus): 0.335 Jarque-Bera (JB): 1.574
Skew: -0.756 Prob(JB): 0.455
Kurtosis: 2.520 Cond. No. 184.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.891
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0280
Time: 03:52:57 Log-Likelihood: -70.829
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 61.6122 72.845 0.846 0.414 -97.104 220.328
C(dose)[T.1] 48.8605 16.275 3.002 0.011 13.401 84.320
expression 0.8506 10.519 0.081 0.937 -22.069 23.770
Omnibus: 2.754 Durbin-Watson: 0.814
Prob(Omnibus): 0.252 Jarque-Bera (JB): 1.901
Skew: -0.851 Prob(JB): 0.387
Kurtosis: 2.616 Cond. No. 67.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:52:57 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.035
Model: OLS Adj. R-squared: -0.039
Method: Least Squares F-statistic: 0.4752
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.503
Time: 03:52:57 Log-Likelihood: -75.031
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 30.8369 91.693 0.336 0.742 -167.253 228.927
expression 8.9134 12.931 0.689 0.503 -19.022 36.849
Omnibus: 0.188 Durbin-Watson: 1.495
Prob(Omnibus): 0.910 Jarque-Bera (JB): 0.387
Skew: -0.099 Prob(JB): 0.824
Kurtosis: 2.239 Cond. No. 66.4