AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.132 0.720 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.695
Model: OLS Adj. R-squared: 0.647
Method: Least Squares F-statistic: 14.44
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.87e-05
Time: 05:10:34 Log-Likelihood: -99.446
No. Observations: 23 AIC: 206.9
Df Residuals: 19 BIC: 211.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 215.8569 167.374 1.290 0.213 -134.461 566.175
C(dose)[T.1] -320.8588 226.731 -1.415 0.173 -795.413 153.695
expression -18.3165 18.954 -0.966 0.346 -57.988 21.354
expression:C(dose)[T.1] 42.2858 25.618 1.651 0.115 -11.333 95.905
Omnibus: 0.022 Durbin-Watson: 1.455
Prob(Omnibus): 0.989 Jarque-Bera (JB): 0.225
Skew: -0.025 Prob(JB): 0.894
Kurtosis: 2.518 Cond. No. 642.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.68
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.65e-05
Time: 05:10:34 Log-Likelihood: -100.99
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 11.5751 117.441 0.099 0.922 -233.403 256.553
C(dose)[T.1] 53.1333 8.759 6.066 0.000 34.862 71.404
expression 4.8308 13.290 0.363 0.720 -22.891 32.553
Omnibus: 0.294 Durbin-Watson: 1.904
Prob(Omnibus): 0.863 Jarque-Bera (JB): 0.467
Skew: 0.036 Prob(JB): 0.792
Kurtosis: 2.305 Cond. No. 241.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:10:34 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.010
Model: OLS Adj. R-squared: -0.037
Method: Least Squares F-statistic: 0.2099
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.652
Time: 05:10:34 Log-Likelihood: -112.99
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -8.6737 193.064 -0.045 0.965 -410.173 392.825
expression 9.9928 21.811 0.458 0.652 -35.366 55.352
Omnibus: 3.045 Durbin-Watson: 2.473
Prob(Omnibus): 0.218 Jarque-Bera (JB): 1.373
Skew: 0.176 Prob(JB): 0.503
Kurtosis: 1.856 Cond. No. 241.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.299 0.595 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.463
Model: OLS Adj. R-squared: 0.316
Method: Least Squares F-statistic: 3.156
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0683
Time: 05:10:34 Log-Likelihood: -70.642
No. Observations: 15 AIC: 149.3
Df Residuals: 11 BIC: 152.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -25.7794 183.459 -0.141 0.891 -429.571 378.012
C(dose)[T.1] 89.1331 390.091 0.228 0.823 -769.452 947.719
expression 11.6679 22.918 0.509 0.621 -38.774 62.109
expression:C(dose)[T.1] -4.8119 49.862 -0.097 0.925 -114.557 104.934
Omnibus: 2.211 Durbin-Watson: 0.776
Prob(Omnibus): 0.331 Jarque-Bera (JB): 1.536
Skew: -0.756 Prob(JB): 0.464
Kurtosis: 2.588 Cond. No. 458.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.462
Model: OLS Adj. R-squared: 0.373
Method: Least Squares F-statistic: 5.156
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0242
Time: 05:10:34 Log-Likelihood: -70.649
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -17.6590 156.150 -0.113 0.912 -357.880 322.562
C(dose)[T.1] 51.5229 16.120 3.196 0.008 16.400 86.645
expression 10.6514 19.495 0.546 0.595 -31.825 53.128
Omnibus: 2.235 Durbin-Watson: 0.775
Prob(Omnibus): 0.327 Jarque-Bera (JB): 1.505
Skew: -0.755 Prob(JB): 0.471
Kurtosis: 2.641 Cond. No. 162.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:10:34 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.072
Method: Least Squares F-statistic: 0.05583
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.817
Time: 05:10:34 Log-Likelihood: -75.268
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 139.3871 193.757 0.719 0.485 -279.201 557.975
expression -5.8080 24.580 -0.236 0.817 -58.910 47.294
Omnibus: 0.329 Durbin-Watson: 1.549
Prob(Omnibus): 0.848 Jarque-Bera (JB): 0.465
Skew: -0.015 Prob(JB): 0.793
Kurtosis: 2.138 Cond. No. 153.