AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.914 | 0.350 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.668 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 12.77 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.43e-05 |
Time: | 04:12:30 | Log-Likelihood: | -100.41 |
No. Observations: | 23 | AIC: | 208.8 |
Df Residuals: | 19 | BIC: | 213.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 6.0769 | 128.651 | 0.047 | 0.963 | -263.193 275.347 |
C(dose)[T.1] | -33.9745 | 188.405 | -0.180 | 0.859 | -428.311 360.362 |
expression | 6.5218 | 17.413 | 0.375 | 0.712 | -29.924 42.968 |
expression:C(dose)[T.1] | 12.5089 | 26.009 | 0.481 | 0.636 | -41.928 66.946 |
Omnibus: | 0.447 | Durbin-Watson: | 1.906 |
Prob(Omnibus): | 0.800 | Jarque-Bera (JB): | 0.390 |
Skew: | -0.278 | Prob(JB): | 0.823 |
Kurtosis: | 2.689 | Cond. No. | 404. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.664 |
Model: | OLS | Adj. R-squared: | 0.631 |
Method: | Least Squares | F-statistic: | 19.80 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.81e-05 |
Time: | 04:12:30 | Log-Likelihood: | -100.55 |
No. Observations: | 23 | AIC: | 207.1 |
Df Residuals: | 20 | BIC: | 210.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -35.3033 | 93.792 | -0.376 | 0.711 | -230.951 160.344 |
C(dose)[T.1] | 56.5270 | 9.202 | 6.143 | 0.000 | 37.332 75.722 |
expression | 12.1288 | 12.683 | 0.956 | 0.350 | -14.328 38.586 |
Omnibus: | 0.524 | Durbin-Watson: | 2.067 |
Prob(Omnibus): | 0.770 | Jarque-Bera (JB): | 0.623 |
Skew: | -0.273 | Prob(JB): | 0.732 |
Kurtosis: | 2.406 | Cond. No. | 162. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:12:30 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.031 |
Model: | OLS | Adj. R-squared: | -0.015 |
Method: | Least Squares | F-statistic: | 0.6761 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.420 |
Time: | 04:12:30 | Log-Likelihood: | -112.74 |
No. Observations: | 23 | AIC: | 229.5 |
Df Residuals: | 21 | BIC: | 231.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 196.6272 | 142.362 | 1.381 | 0.182 | -99.431 492.685 |
expression | -16.1160 | 19.600 | -0.822 | 0.420 | -56.877 24.645 |
Omnibus: | 1.924 | Durbin-Watson: | 2.347 |
Prob(Omnibus): | 0.382 | Jarque-Bera (JB): | 1.445 |
Skew: | 0.421 | Prob(JB): | 0.486 |
Kurtosis: | 2.106 | Cond. No. | 148. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.403 | 0.147 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.555 |
Model: | OLS | Adj. R-squared: | 0.433 |
Method: | Least Squares | F-statistic: | 4.567 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0260 |
Time: | 04:12:30 | Log-Likelihood: | -69.233 |
No. Observations: | 15 | AIC: | 146.5 |
Df Residuals: | 11 | BIC: | 149.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -135.9177 | 236.301 | -0.575 | 0.577 | -656.012 384.177 |
C(dose)[T.1] | -191.3936 | 401.447 | -0.477 | 0.643 | -1074.973 692.185 |
expression | 24.0526 | 27.921 | 0.861 | 0.407 | -37.402 85.507 |
expression:C(dose)[T.1] | 27.4754 | 46.874 | 0.586 | 0.570 | -75.693 130.644 |
Omnibus: | 1.209 | Durbin-Watson: | 0.583 |
Prob(Omnibus): | 0.546 | Jarque-Bera (JB): | 1.030 |
Skew: | -0.513 | Prob(JB): | 0.597 |
Kurtosis: | 2.228 | Cond. No. | 590. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.541 |
Model: | OLS | Adj. R-squared: | 0.464 |
Method: | Least Squares | F-statistic: | 7.064 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00938 |
Time: | 04:12:30 | Log-Likelihood: | -69.464 |
No. Observations: | 15 | AIC: | 144.9 |
Df Residuals: | 12 | BIC: | 147.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -218.3371 | 184.645 | -1.182 | 0.260 | -620.644 183.970 |
C(dose)[T.1] | 43.7475 | 14.791 | 2.958 | 0.012 | 11.522 75.973 |
expression | 33.8014 | 21.805 | 1.550 | 0.147 | -13.708 81.311 |
Omnibus: | 1.671 | Durbin-Watson: | 0.646 |
Prob(Omnibus): | 0.434 | Jarque-Bera (JB): | 1.218 |
Skew: | -0.490 | Prob(JB): | 0.544 |
Kurtosis: | 2.006 | Cond. No. | 224. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:12:30 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.206 |
Model: | OLS | Adj. R-squared: | 0.145 |
Method: | Least Squares | F-statistic: | 3.371 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0893 |
Time: | 04:12:30 | Log-Likelihood: | -73.571 |
No. Observations: | 15 | AIC: | 151.1 |
Df Residuals: | 13 | BIC: | 152.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -325.9078 | 228.701 | -1.425 | 0.178 | -819.987 168.172 |
expression | 49.1292 | 26.758 | 1.836 | 0.089 | -8.679 106.937 |
Omnibus: | 2.158 | Durbin-Watson: | 1.477 |
Prob(Omnibus): | 0.340 | Jarque-Bera (JB): | 0.997 |
Skew: | 0.113 | Prob(JB): | 0.607 |
Kurtosis: | 1.757 | Cond. No. | 219. |