AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.166 0.688 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.600
Method: Least Squares F-statistic: 11.98
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000124
Time: 03:41:55 Log-Likelihood: -100.89
No. Observations: 23 AIC: 209.8
Df Residuals: 19 BIC: 214.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 85.3494 58.597 1.457 0.162 -37.297 207.995
C(dose)[T.1] 22.7577 83.175 0.274 0.787 -151.330 196.846
expression -4.8569 9.088 -0.534 0.599 -23.879 14.165
expression:C(dose)[T.1] 4.7634 13.345 0.357 0.725 -23.168 32.694
Omnibus: 0.137 Durbin-Watson: 1.819
Prob(Omnibus): 0.934 Jarque-Bera (JB): 0.357
Skew: 0.037 Prob(JB): 0.836
Kurtosis: 2.394 Cond. No. 153.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.73
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.61e-05
Time: 03:41:55 Log-Likelihood: -100.97
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 71.1840 42.163 1.688 0.107 -16.766 159.134
C(dose)[T.1] 52.2595 9.127 5.726 0.000 33.222 71.297
expression -2.6476 6.508 -0.407 0.688 -16.223 10.928
Omnibus: 0.155 Durbin-Watson: 1.897
Prob(Omnibus): 0.925 Jarque-Bera (JB): 0.373
Skew: 0.024 Prob(JB): 0.830
Kurtosis: 2.378 Cond. No. 62.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:41:55 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.081
Model: OLS Adj. R-squared: 0.038
Method: Least Squares F-statistic: 1.859
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.187
Time: 03:41:55 Log-Likelihood: -112.13
No. Observations: 23 AIC: 228.3
Df Residuals: 21 BIC: 230.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 163.4206 61.776 2.645 0.015 34.950 291.891
expression -13.4635 9.874 -1.364 0.187 -33.998 7.071
Omnibus: 2.452 Durbin-Watson: 2.317
Prob(Omnibus): 0.293 Jarque-Bera (JB): 1.421
Skew: 0.315 Prob(JB): 0.492
Kurtosis: 1.958 Cond. No. 57.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.887 0.365 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.488
Model: OLS Adj. R-squared: 0.349
Method: Least Squares F-statistic: 3.497
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0533
Time: 03:41:56 Log-Likelihood: -70.277
No. Observations: 15 AIC: 148.6
Df Residuals: 11 BIC: 151.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 11.8457 121.046 0.098 0.924 -254.574 278.266
C(dose)[T.1] 24.4849 157.971 0.155 0.880 -323.207 372.177
expression 7.8576 17.034 0.461 0.654 -29.633 45.348
expression:C(dose)[T.1] 3.9390 22.583 0.174 0.865 -45.766 53.644
Omnibus: 4.076 Durbin-Watson: 1.186
Prob(Omnibus): 0.130 Jarque-Bera (JB): 2.139
Skew: -0.913 Prob(JB): 0.343
Kurtosis: 3.292 Cond. No. 195.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.487
Model: OLS Adj. R-squared: 0.401
Method: Least Squares F-statistic: 5.689
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0183
Time: 03:41:56 Log-Likelihood: -70.298
No. Observations: 15 AIC: 146.6
Df Residuals: 12 BIC: 148.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -4.0064 76.655 -0.052 0.959 -171.023 163.010
C(dose)[T.1] 51.8950 15.456 3.358 0.006 18.219 85.571
expression 10.0985 10.722 0.942 0.365 -13.264 33.461
Omnibus: 3.770 Durbin-Watson: 1.199
Prob(Omnibus): 0.152 Jarque-Bera (JB): 2.029
Skew: -0.896 Prob(JB): 0.363
Kurtosis: 3.185 Cond. No. 72.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:41:56 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.072
Method: Least Squares F-statistic: 0.05901
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.812
Time: 03:41:56 Log-Likelihood: -75.266
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 69.9289 98.241 0.712 0.489 -142.308 282.166
expression 3.4247 14.098 0.243 0.812 -27.032 33.881
Omnibus: 0.521 Durbin-Watson: 1.756
Prob(Omnibus): 0.771 Jarque-Bera (JB): 0.550
Skew: 0.043 Prob(JB): 0.760
Kurtosis: 2.066 Cond. No. 68.9