AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.030 | 0.322 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.690 |
Model: | OLS | Adj. R-squared: | 0.641 |
Method: | Least Squares | F-statistic: | 14.11 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.49e-05 |
Time: | 04:34:33 | Log-Likelihood: | -99.631 |
No. Observations: | 23 | AIC: | 207.3 |
Df Residuals: | 19 | BIC: | 211.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -18.2595 | 270.542 | -0.067 | 0.947 | -584.511 547.992 |
C(dose)[T.1] | -602.1967 | 538.290 | -1.119 | 0.277 | -1728.850 524.457 |
expression | 7.0327 | 26.249 | 0.268 | 0.792 | -47.907 61.972 |
expression:C(dose)[T.1] | 62.4257 | 51.575 | 1.210 | 0.241 | -45.523 170.374 |
Omnibus: | 0.075 | Durbin-Watson: | 1.708 |
Prob(Omnibus): | 0.963 | Jarque-Bera (JB): | 0.295 |
Skew: | -0.045 | Prob(JB): | 0.863 |
Kurtosis: | 2.452 | Cond. No. | 1.58e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.666 |
Model: | OLS | Adj. R-squared: | 0.633 |
Method: | Least Squares | F-statistic: | 19.96 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.71e-05 |
Time: | 04:34:33 | Log-Likelihood: | -100.48 |
No. Observations: | 23 | AIC: | 207.0 |
Df Residuals: | 20 | BIC: | 210.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -184.8766 | 235.595 | -0.785 | 0.442 | -676.318 306.565 |
C(dose)[T.1] | 49.2382 | 9.458 | 5.206 | 0.000 | 29.510 68.966 |
expression | 23.2021 | 22.856 | 1.015 | 0.322 | -24.475 70.879 |
Omnibus: | 0.245 | Durbin-Watson: | 1.673 |
Prob(Omnibus): | 0.885 | Jarque-Bera (JB): | 0.420 |
Skew: | -0.171 | Prob(JB): | 0.811 |
Kurtosis: | 2.433 | Cond. No. | 579. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:34:33 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.214 |
Model: | OLS | Adj. R-squared: | 0.177 |
Method: | Least Squares | F-statistic: | 5.716 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0263 |
Time: | 04:34:33 | Log-Likelihood: | -110.34 |
No. Observations: | 23 | AIC: | 224.7 |
Df Residuals: | 21 | BIC: | 226.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -689.1220 | 321.652 | -2.142 | 0.044 | -1358.034 -20.210 |
expression | 74.0055 | 30.955 | 2.391 | 0.026 | 9.631 138.380 |
Omnibus: | 0.391 | Durbin-Watson: | 2.254 |
Prob(Omnibus): | 0.822 | Jarque-Bera (JB): | 0.464 |
Skew: | -0.264 | Prob(JB): | 0.793 |
Kurtosis: | 2.547 | Cond. No. | 527. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
8.629 | 0.012 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.711 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 9.016 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00266 |
Time: | 04:34:33 | Log-Likelihood: | -65.993 |
No. Observations: | 15 | AIC: | 140.0 |
Df Residuals: | 11 | BIC: | 142.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 276.4460 | 353.991 | 0.781 | 0.451 | -502.683 1055.575 |
C(dose)[T.1] | 467.7736 | 407.802 | 1.147 | 0.276 | -429.793 1365.341 |
expression | -22.1624 | 37.523 | -0.591 | 0.567 | -104.749 60.425 |
expression:C(dose)[T.1] | -47.9942 | 43.811 | -1.095 | 0.297 | -144.421 48.433 |
Omnibus: | 3.663 | Durbin-Watson: | 1.006 |
Prob(Omnibus): | 0.160 | Jarque-Bera (JB): | 1.997 |
Skew: | -0.891 | Prob(JB): | 0.368 |
Kurtosis: | 3.142 | Cond. No. | 937. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.679 |
Model: | OLS | Adj. R-squared: | 0.626 |
Method: | Least Squares | F-statistic: | 12.71 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00109 |
Time: | 04:34:33 | Log-Likelihood: | -66.770 |
No. Observations: | 15 | AIC: | 139.5 |
Df Residuals: | 12 | BIC: | 141.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 608.4793 | 184.398 | 3.300 | 0.006 | 206.711 1010.247 |
C(dose)[T.1] | 21.3410 | 15.298 | 1.395 | 0.188 | -11.991 54.673 |
expression | -57.3683 | 19.530 | -2.937 | 0.012 | -99.920 -14.816 |
Omnibus: | 0.490 | Durbin-Watson: | 0.933 |
Prob(Omnibus): | 0.783 | Jarque-Bera (JB): | 0.520 |
Skew: | -0.343 | Prob(JB): | 0.771 |
Kurtosis: | 2.398 | Cond. No. | 287. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:34:33 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.627 |
Model: | OLS | Adj. R-squared: | 0.599 |
Method: | Least Squares | F-statistic: | 21.88 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000432 |
Time: | 04:34:33 | Log-Likelihood: | -67.897 |
No. Observations: | 15 | AIC: | 139.8 |
Df Residuals: | 13 | BIC: | 141.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 774.7581 | 145.723 | 5.317 | 0.000 | 459.942 1089.574 |
expression | -74.2559 | 15.873 | -4.678 | 0.000 | -108.548 -39.964 |
Omnibus: | 0.288 | Durbin-Watson: | 1.417 |
Prob(Omnibus): | 0.866 | Jarque-Bera (JB): | 0.424 |
Skew: | -0.243 | Prob(JB): | 0.809 |
Kurtosis: | 2.335 | Cond. No. | 218. |