AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.132 0.720 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.807
Model: OLS Adj. R-squared: 0.776
Method: Least Squares F-statistic: 26.46
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.39e-07
Time: 04:55:51 Log-Likelihood: -94.194
No. Observations: 23 AIC: 196.4
Df Residuals: 19 BIC: 200.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -86.8331 66.539 -1.305 0.207 -226.101 52.435
C(dose)[T.1] 459.7303 104.138 4.415 0.000 241.767 677.694
expression 25.5081 12.005 2.125 0.047 0.381 50.635
expression:C(dose)[T.1] -73.7191 18.846 -3.912 0.001 -113.165 -34.273
Omnibus: 0.968 Durbin-Watson: 2.117
Prob(Omnibus): 0.616 Jarque-Bera (JB): 0.783
Skew: -0.099 Prob(JB): 0.676
Kurtosis: 2.118 Cond. No. 222.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.68
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.65e-05
Time: 04:55:51 Log-Likelihood: -100.99
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 78.5581 67.283 1.168 0.257 -61.792 218.908
C(dose)[T.1] 53.2256 8.746 6.085 0.000 34.981 71.470
expression -4.4038 12.119 -0.363 0.720 -29.684 20.877
Omnibus: 0.320 Durbin-Watson: 1.880
Prob(Omnibus): 0.852 Jarque-Bera (JB): 0.487
Skew: 0.111 Prob(JB): 0.784
Kurtosis: 2.322 Cond. No. 88.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:55:51 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.006
Model: OLS Adj. R-squared: -0.042
Method: Least Squares F-statistic: 0.1227
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.730
Time: 04:55:51 Log-Likelihood: -113.04
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 118.2899 110.358 1.072 0.296 -111.212 347.791
expression -6.9913 19.960 -0.350 0.730 -48.500 34.518
Omnibus: 3.466 Durbin-Watson: 2.462
Prob(Omnibus): 0.177 Jarque-Bera (JB): 1.442
Skew: 0.164 Prob(JB): 0.486
Kurtosis: 1.818 Cond. No. 87.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.050 0.826 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.477
Model: OLS Adj. R-squared: 0.334
Method: Least Squares F-statistic: 3.344
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0595
Time: 04:55:51 Log-Likelihood: -70.439
No. Observations: 15 AIC: 148.9
Df Residuals: 11 BIC: 151.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -14.4164 170.711 -0.084 0.934 -390.150 361.317
C(dose)[T.1] 199.7225 205.595 0.971 0.352 -252.788 652.233
expression 16.7540 34.863 0.481 0.640 -59.980 93.488
expression:C(dose)[T.1] -31.3573 42.468 -0.738 0.476 -124.828 62.113
Omnibus: 2.761 Durbin-Watson: 0.932
Prob(Omnibus): 0.251 Jarque-Bera (JB): 1.789
Skew: -0.835 Prob(JB): 0.409
Kurtosis: 2.735 Cond. No. 185.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 4.930
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0274
Time: 04:55:51 Log-Likelihood: -70.802
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 88.8203 96.076 0.924 0.373 -120.512 298.153
C(dose)[T.1] 48.3995 16.104 3.005 0.011 13.312 83.487
expression -4.3790 19.527 -0.224 0.826 -46.924 38.166
Omnibus: 2.866 Durbin-Watson: 0.798
Prob(Omnibus): 0.239 Jarque-Bera (JB): 1.973
Skew: -0.869 Prob(JB): 0.373
Kurtosis: 2.627 Cond. No. 61.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:55:51 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.038
Model: OLS Adj. R-squared: -0.036
Method: Least Squares F-statistic: 0.5117
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.487
Time: 04:55:51 Log-Likelihood: -75.011
No. Observations: 15 AIC: 154.0
Df Residuals: 13 BIC: 155.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 176.6399 116.418 1.517 0.153 -74.866 428.145
expression -17.3293 24.225 -0.715 0.487 -69.664 35.006
Omnibus: 0.289 Durbin-Watson: 1.667
Prob(Omnibus): 0.865 Jarque-Bera (JB): 0.448
Skew: -0.084 Prob(JB): 0.799
Kurtosis: 2.170 Cond. No. 58.5