AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.844 0.369 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.674
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 13.12
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.11e-05
Time: 03:57:57 Log-Likelihood: -100.20
No. Observations: 23 AIC: 208.4
Df Residuals: 19 BIC: 212.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 183.1593 109.385 1.674 0.110 -45.787 412.106
C(dose)[T.1] -52.9715 133.336 -0.397 0.696 -332.047 226.104
expression -17.7081 14.999 -1.181 0.252 -49.101 13.685
expression:C(dose)[T.1] 14.6675 18.141 0.809 0.429 -23.302 52.637
Omnibus: 0.032 Durbin-Watson: 1.854
Prob(Omnibus): 0.984 Jarque-Bera (JB): 0.244
Skew: 0.025 Prob(JB): 0.885
Kurtosis: 2.498 Cond. No. 326.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.630
Method: Least Squares F-statistic: 19.70
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.87e-05
Time: 03:57:57 Log-Likelihood: -100.59
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 110.1458 61.192 1.800 0.087 -17.499 237.791
C(dose)[T.1] 54.6017 8.700 6.276 0.000 36.453 72.750
expression -7.6816 8.364 -0.918 0.369 -25.128 9.764
Omnibus: 0.336 Durbin-Watson: 1.890
Prob(Omnibus): 0.846 Jarque-Bera (JB): 0.498
Skew: 0.128 Prob(JB): 0.779
Kurtosis: 2.326 Cond. No. 107.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:57:57 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.048
Method: Least Squares F-statistic: 0.002027
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.965
Time: 03:57:57 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 75.1157 102.475 0.733 0.472 -137.993 288.225
expression 0.6252 13.887 0.045 0.965 -28.255 29.505
Omnibus: 3.266 Durbin-Watson: 2.483
Prob(Omnibus): 0.195 Jarque-Bera (JB): 1.556
Skew: 0.286 Prob(JB): 0.459
Kurtosis: 1.861 Cond. No. 107.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.017 0.068 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.671
Model: OLS Adj. R-squared: 0.582
Method: Least Squares F-statistic: 7.489
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00527
Time: 03:57:57 Log-Likelihood: -66.955
No. Observations: 15 AIC: 141.9
Df Residuals: 11 BIC: 144.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 22.5737 84.612 0.267 0.795 -163.655 208.802
C(dose)[T.1] -157.5279 126.770 -1.243 0.240 -436.547 121.492
expression 6.5660 12.311 0.533 0.604 -20.531 33.663
expression:C(dose)[T.1] 31.6753 18.861 1.679 0.121 -9.837 73.188
Omnibus: 5.127 Durbin-Watson: 1.566
Prob(Omnibus): 0.077 Jarque-Bera (JB): 3.007
Skew: -1.089 Prob(JB): 0.222
Kurtosis: 3.252 Cond. No. 177.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.587
Model: OLS Adj. R-squared: 0.518
Method: Least Squares F-statistic: 8.529
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00496
Time: 03:57:57 Log-Likelihood: -68.667
No. Observations: 15 AIC: 143.3
Df Residuals: 12 BIC: 145.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -69.6200 69.097 -1.008 0.334 -220.169 80.929
C(dose)[T.1] 54.2644 13.856 3.916 0.002 24.074 84.455
expression 20.0617 10.009 2.004 0.068 -1.747 41.870
Omnibus: 3.933 Durbin-Watson: 1.212
Prob(Omnibus): 0.140 Jarque-Bera (JB): 2.264
Skew: -0.951 Prob(JB): 0.322
Kurtosis: 3.087 Cond. No. 70.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:57:57 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.059
Model: OLS Adj. R-squared: -0.013
Method: Least Squares F-statistic: 0.8182
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.382
Time: 03:57:57 Log-Likelihood: -74.842
No. Observations: 15 AIC: 153.7
Df Residuals: 13 BIC: 155.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 7.2229 96.074 0.075 0.941 -200.332 214.777
expression 12.9086 14.271 0.905 0.382 -17.922 43.739
Omnibus: 0.248 Durbin-Watson: 2.041
Prob(Omnibus): 0.883 Jarque-Bera (JB): 0.425
Skew: -0.133 Prob(JB): 0.809
Kurtosis: 2.219 Cond. No. 67.1