AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.587 0.453 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.609
Method: Least Squares F-statistic: 12.44
Date: Thu, 03 Apr 2025 Prob (F-statistic): 9.88e-05
Time: 22:54:32 Log-Likelihood: -100.61
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 80.9071 246.387 0.328 0.746 -434.787 596.602
C(dose)[T.1] 193.9974 312.569 0.621 0.542 -460.217 848.211
expression -2.9528 27.241 -0.108 0.915 -59.969 54.063
expression:C(dose)[T.1] -15.7647 34.703 -0.454 0.655 -88.398 56.869
Omnibus: 0.627 Durbin-Watson: 1.673
Prob(Omnibus): 0.731 Jarque-Bera (JB): 0.662
Skew: 0.147 Prob(JB): 0.718
Kurtosis: 2.223 Cond. No. 883.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.625
Method: Least Squares F-statistic: 19.33
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.12e-05
Time: 22:54:32 Log-Likelihood: -100.73
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 168.7422 149.656 1.128 0.273 -143.434 480.918
C(dose)[T.1] 52.0627 8.803 5.914 0.000 33.701 70.425
expression -12.6669 16.538 -0.766 0.453 -47.165 21.831
Omnibus: 0.202 Durbin-Watson: 1.691
Prob(Omnibus): 0.904 Jarque-Bera (JB): 0.404
Skew: 0.092 Prob(JB): 0.817
Kurtosis: 2.377 Cond. No. 316.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:54:33 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.063
Model: OLS Adj. R-squared: 0.018
Method: Least Squares F-statistic: 1.406
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.249
Time: 22:54:33 Log-Likelihood: -112.36
No. Observations: 23 AIC: 228.7
Df Residuals: 21 BIC: 231.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 359.9318 236.435 1.522 0.143 -131.761 851.624
expression -31.1562 26.277 -1.186 0.249 -85.802 23.490
Omnibus: 1.260 Durbin-Watson: 2.228
Prob(Omnibus): 0.533 Jarque-Bera (JB): 0.968
Skew: 0.230 Prob(JB): 0.616
Kurtosis: 2.107 Cond. No. 308.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.058 0.813 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.302
Method: Least Squares F-statistic: 3.022
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0756
Time: 22:54:33 Log-Likelihood: -70.792
No. Observations: 15 AIC: 149.6
Df Residuals: 11 BIC: 152.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 102.5860 454.880 0.226 0.826 -898.597 1103.769
C(dose)[T.1] 102.6512 592.625 0.173 0.866 -1201.708 1407.011
expression -4.2018 54.345 -0.077 0.940 -123.814 115.411
expression:C(dose)[T.1] -5.7192 68.996 -0.083 0.935 -157.578 146.140
Omnibus: 2.690 Durbin-Watson: 0.816
Prob(Omnibus): 0.261 Jarque-Bera (JB): 1.901
Skew: -0.844 Prob(JB): 0.387
Kurtosis: 2.563 Cond. No. 894.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 4.938
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0272
Time: 22:54:33 Log-Likelihood: -70.797
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 132.2749 268.564 0.493 0.631 -452.876 717.426
C(dose)[T.1] 53.5711 23.962 2.236 0.045 1.361 105.781
expression -7.7499 32.067 -0.242 0.813 -77.619 62.119
Omnibus: 2.612 Durbin-Watson: 0.826
Prob(Omnibus): 0.271 Jarque-Bera (JB): 1.833
Skew: -0.830 Prob(JB): 0.400
Kurtosis: 2.577 Cond. No. 303.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:54:33 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.223
Model: OLS Adj. R-squared: 0.163
Method: Least Squares F-statistic: 3.730
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0755
Time: 22:54:33 Log-Likelihood: -73.408
No. Observations: 15 AIC: 150.8
Df Residuals: 13 BIC: 152.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -308.5991 208.469 -1.480 0.163 -758.968 141.770
expression 46.4060 24.027 1.931 0.076 -5.501 98.313
Omnibus: 0.060 Durbin-Watson: 1.019
Prob(Omnibus): 0.971 Jarque-Bera (JB): 0.132
Skew: -0.091 Prob(JB): 0.936
Kurtosis: 2.578 Cond. No. 205.