AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.355 | 0.258 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.697 |
Model: | OLS | Adj. R-squared: | 0.649 |
Method: | Least Squares | F-statistic: | 14.54 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.70e-05 |
Time: | 05:09:31 | Log-Likelihood: | -99.391 |
No. Observations: | 23 | AIC: | 206.8 |
Df Residuals: | 19 | BIC: | 211.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 103.3498 | 176.414 | 0.586 | 0.565 | -265.888 472.588 |
C(dose)[T.1] | 449.0567 | 315.428 | 1.424 | 0.171 | -211.141 1109.254 |
expression | -5.5882 | 20.050 | -0.279 | 0.783 | -47.554 36.378 |
expression:C(dose)[T.1] | -45.1588 | 35.934 | -1.257 | 0.224 | -120.370 30.052 |
Omnibus: | 1.841 | Durbin-Watson: | 2.082 |
Prob(Omnibus): | 0.398 | Jarque-Bera (JB): | 1.033 |
Skew: | 0.061 | Prob(JB): | 0.597 |
Kurtosis: | 1.969 | Cond. No. | 805. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.671 |
Model: | OLS | Adj. R-squared: | 0.638 |
Method: | Least Squares | F-statistic: | 20.43 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.47e-05 |
Time: | 05:09:31 | Log-Likelihood: | -100.31 |
No. Observations: | 23 | AIC: | 206.6 |
Df Residuals: | 20 | BIC: | 210.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 226.9863 | 148.540 | 1.528 | 0.142 | -82.862 536.835 |
C(dose)[T.1] | 52.7954 | 8.500 | 6.211 | 0.000 | 35.065 70.526 |
expression | -19.6477 | 16.878 | -1.164 | 0.258 | -54.855 15.560 |
Omnibus: | 3.318 | Durbin-Watson: | 1.863 |
Prob(Omnibus): | 0.190 | Jarque-Bera (JB): | 1.340 |
Skew: | 0.021 | Prob(JB): | 0.512 |
Kurtosis: | 1.818 | Cond. No. | 312. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:09:31 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.037 |
Model: | OLS | Adj. R-squared: | -0.009 |
Method: | Least Squares | F-statistic: | 0.8135 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.377 |
Time: | 05:09:31 | Log-Likelihood: | -112.67 |
No. Observations: | 23 | AIC: | 229.3 |
Df Residuals: | 21 | BIC: | 231.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 302.6389 | 247.256 | 1.224 | 0.235 | -211.558 816.836 |
expression | -25.3879 | 28.148 | -0.902 | 0.377 | -83.924 33.148 |
Omnibus: | 3.245 | Durbin-Watson: | 2.570 |
Prob(Omnibus): | 0.197 | Jarque-Bera (JB): | 1.401 |
Skew: | 0.164 | Prob(JB): | 0.496 |
Kurtosis: | 1.836 | Cond. No. | 311. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.266 | 0.158 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.558 |
Model: | OLS | Adj. R-squared: | 0.437 |
Method: | Least Squares | F-statistic: | 4.626 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0251 |
Time: | 05:09:31 | Log-Likelihood: | -69.180 |
No. Observations: | 15 | AIC: | 146.4 |
Df Residuals: | 11 | BIC: | 149.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 541.2411 | 312.678 | 1.731 | 0.111 | -146.959 1229.441 |
C(dose)[T.1] | -259.0830 | 405.048 | -0.640 | 0.536 | -1150.588 632.422 |
expression | -54.8040 | 36.145 | -1.516 | 0.158 | -134.358 24.750 |
expression:C(dose)[T.1] | 34.8443 | 47.633 | 0.732 | 0.480 | -69.994 139.683 |
Omnibus: | 3.744 | Durbin-Watson: | 1.246 |
Prob(Omnibus): | 0.154 | Jarque-Bera (JB): | 2.116 |
Skew: | -0.919 | Prob(JB): | 0.347 |
Kurtosis: | 3.092 | Cond. No. | 651. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.536 |
Model: | OLS | Adj. R-squared: | 0.459 |
Method: | Least Squares | F-statistic: | 6.940 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00994 |
Time: | 05:09:31 | Log-Likelihood: | -69.536 |
No. Observations: | 15 | AIC: | 145.1 |
Df Residuals: | 12 | BIC: | 147.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 367.7764 | 199.822 | 1.841 | 0.091 | -67.598 803.151 |
C(dose)[T.1] | 36.9611 | 16.567 | 2.231 | 0.046 | 0.864 73.058 |
expression | -34.7400 | 23.080 | -1.505 | 0.158 | -85.028 15.548 |
Omnibus: | 3.198 | Durbin-Watson: | 1.013 |
Prob(Omnibus): | 0.202 | Jarque-Bera (JB): | 1.751 |
Skew: | -0.836 | Prob(JB): | 0.417 |
Kurtosis: | 3.057 | Cond. No. | 239. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:09:31 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.344 |
Model: | OLS | Adj. R-squared: | 0.294 |
Method: | Least Squares | F-statistic: | 6.817 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0216 |
Time: | 05:09:31 | Log-Likelihood: | -72.138 |
No. Observations: | 15 | AIC: | 148.3 |
Df Residuals: | 13 | BIC: | 149.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 601.1748 | 194.555 | 3.090 | 0.009 | 180.863 1021.486 |
expression | -60.0051 | 22.983 | -2.611 | 0.022 | -109.656 -10.354 |
Omnibus: | 1.414 | Durbin-Watson: | 1.847 |
Prob(Omnibus): | 0.493 | Jarque-Bera (JB): | 0.919 |
Skew: | 0.583 | Prob(JB): | 0.632 |
Kurtosis: | 2.665 | Cond. No. | 203. |