AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.346 | 0.050 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.716 |
Model: | OLS | Adj. R-squared: | 0.671 |
Method: | Least Squares | F-statistic: | 15.94 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.01e-05 |
Time: | 03:56:02 | Log-Likelihood: | -98.641 |
No. Observations: | 23 | AIC: | 205.3 |
Df Residuals: | 19 | BIC: | 209.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -53.2705 | 133.360 | -0.399 | 0.694 | -332.397 225.856 |
C(dose)[T.1] | -39.2705 | 168.365 | -0.233 | 0.818 | -391.662 313.121 |
expression | 14.9006 | 18.472 | 0.807 | 0.430 | -23.763 53.564 |
expression:C(dose)[T.1] | 11.8863 | 23.020 | 0.516 | 0.612 | -36.295 60.068 |
Omnibus: | 1.411 | Durbin-Watson: | 2.042 |
Prob(Omnibus): | 0.494 | Jarque-Bera (JB): | 0.401 |
Skew: | -0.248 | Prob(JB): | 0.818 |
Kurtosis: | 3.415 | Cond. No. | 431. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.712 |
Model: | OLS | Adj. R-squared: | 0.683 |
Method: | Least Squares | F-statistic: | 24.69 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.97e-06 |
Time: | 03:56:02 | Log-Likelihood: | -98.801 |
No. Observations: | 23 | AIC: | 203.6 |
Df Residuals: | 20 | BIC: | 207.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -108.4790 | 78.230 | -1.387 | 0.181 | -271.663 54.705 |
C(dose)[T.1] | 47.5514 | 8.419 | 5.648 | 0.000 | 29.989 65.113 |
expression | 22.5546 | 10.819 | 2.085 | 0.050 | -0.013 45.122 |
Omnibus: | 1.033 | Durbin-Watson: | 2.113 |
Prob(Omnibus): | 0.597 | Jarque-Bera (JB): | 0.196 |
Skew: | -0.154 | Prob(JB): | 0.907 |
Kurtosis: | 3.331 | Cond. No. | 148. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:56:02 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.252 |
Model: | OLS | Adj. R-squared: | 0.216 |
Method: | Least Squares | F-statistic: | 7.070 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0147 |
Time: | 03:56:02 | Log-Likelihood: | -109.77 |
No. Observations: | 23 | AIC: | 223.5 |
Df Residuals: | 21 | BIC: | 225.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -233.4928 | 117.958 | -1.979 | 0.061 | -478.799 11.813 |
expression | 42.6966 | 16.057 | 2.659 | 0.015 | 9.303 76.090 |
Omnibus: | 6.335 | Durbin-Watson: | 2.378 |
Prob(Omnibus): | 0.042 | Jarque-Bera (JB): | 1.796 |
Skew: | 0.076 | Prob(JB): | 0.407 |
Kurtosis: | 1.640 | Cond. No. | 141. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.934 | 0.112 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.557 |
Model: | OLS | Adj. R-squared: | 0.436 |
Method: | Least Squares | F-statistic: | 4.612 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0253 |
Time: | 03:56:02 | Log-Likelihood: | -69.192 |
No. Observations: | 15 | AIC: | 146.4 |
Df Residuals: | 11 | BIC: | 149.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -149.6770 | 199.224 | -0.751 | 0.468 | -588.165 288.811 |
C(dose)[T.1] | 38.9096 | 272.551 | 0.143 | 0.889 | -560.971 638.790 |
expression | 30.1182 | 27.597 | 1.091 | 0.298 | -30.623 90.859 |
expression:C(dose)[T.1] | 0.8757 | 37.449 | 0.023 | 0.982 | -81.548 83.300 |
Omnibus: | 0.944 | Durbin-Watson: | 0.886 |
Prob(Omnibus): | 0.624 | Jarque-Bera (JB): | 0.851 |
Skew: | -0.403 | Prob(JB): | 0.653 |
Kurtosis: | 2.156 | Cond. No. | 373. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.557 |
Model: | OLS | Adj. R-squared: | 0.483 |
Method: | Least Squares | F-statistic: | 7.546 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00755 |
Time: | 03:56:02 | Log-Likelihood: | -69.193 |
No. Observations: | 15 | AIC: | 144.4 |
Df Residuals: | 12 | BIC: | 146.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -153.1052 | 129.162 | -1.185 | 0.259 | -434.525 128.315 |
C(dose)[T.1] | 45.2736 | 14.294 | 3.167 | 0.008 | 14.130 76.417 |
expression | 30.5938 | 17.861 | 1.713 | 0.112 | -8.322 69.510 |
Omnibus: | 0.967 | Durbin-Watson: | 0.895 |
Prob(Omnibus): | 0.617 | Jarque-Bera (JB): | 0.866 |
Skew: | -0.410 | Prob(JB): | 0.649 |
Kurtosis: | 2.156 | Cond. No. | 137. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:56:02 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.187 |
Model: | OLS | Adj. R-squared: | 0.124 |
Method: | Least Squares | F-statistic: | 2.986 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.108 |
Time: | 03:56:02 | Log-Likelihood: | -73.750 |
No. Observations: | 15 | AIC: | 151.5 |
Df Residuals: | 13 | BIC: | 152.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -194.9188 | 167.268 | -1.165 | 0.265 | -556.279 166.442 |
expression | 39.6581 | 22.952 | 1.728 | 0.108 | -9.926 89.243 |
Omnibus: | 0.891 | Durbin-Watson: | 1.994 |
Prob(Omnibus): | 0.640 | Jarque-Bera (JB): | 0.825 |
Skew: | 0.414 | Prob(JB): | 0.662 |
Kurtosis: | 2.202 | Cond. No. | 136. |