AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.485 | 0.494 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.670 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 12.83 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.17e-05 |
Time: | 03:55:59 | Log-Likelihood: | -100.37 |
No. Observations: | 23 | AIC: | 208.7 |
Df Residuals: | 19 | BIC: | 213.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 337.6543 | 299.201 | 1.129 | 0.273 | -288.581 963.890 |
C(dose)[T.1] | -634.4499 | 821.751 | -0.772 | 0.450 | -2354.395 1085.495 |
expression | -25.7957 | 27.224 | -0.948 | 0.355 | -82.776 31.185 |
expression:C(dose)[T.1] | 62.6837 | 74.940 | 0.836 | 0.413 | -94.167 219.535 |
Omnibus: | 1.006 | Durbin-Watson: | 2.067 |
Prob(Omnibus): | 0.605 | Jarque-Bera (JB): | 0.784 |
Skew: | 0.052 | Prob(JB): | 0.676 |
Kurtosis: | 2.102 | Cond. No. | 2.38e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 19.18 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.23e-05 |
Time: | 03:55:59 | Log-Likelihood: | -100.79 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 246.7557 | 276.668 | 0.892 | 0.383 | -330.363 823.874 |
C(dose)[T.1] | 52.8681 | 8.692 | 6.083 | 0.000 | 34.738 70.999 |
expression | -17.5233 | 25.173 | -0.696 | 0.494 | -70.033 34.987 |
Omnibus: | 0.122 | Durbin-Watson: | 1.870 |
Prob(Omnibus): | 0.941 | Jarque-Bera (JB): | 0.344 |
Skew: | -0.039 | Prob(JB): | 0.842 |
Kurtosis: | 2.406 | Cond. No. | 708. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:55:59 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.023 |
Model: | OLS | Adj. R-squared: | -0.023 |
Method: | Least Squares | F-statistic: | 0.5054 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.485 |
Time: | 03:55:59 | Log-Likelihood: | -112.83 |
No. Observations: | 23 | AIC: | 229.7 |
Df Residuals: | 21 | BIC: | 231.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 402.3170 | 453.854 | 0.886 | 0.385 | -541.524 1346.158 |
expression | -29.3933 | 41.347 | -0.711 | 0.485 | -115.380 56.593 |
Omnibus: | 3.072 | Durbin-Watson: | 2.421 |
Prob(Omnibus): | 0.215 | Jarque-Bera (JB): | 1.584 |
Skew: | 0.326 | Prob(JB): | 0.453 |
Kurtosis: | 1.892 | Cond. No. | 704. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.005 | 0.943 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.456 |
Model: | OLS | Adj. R-squared: | 0.308 |
Method: | Least Squares | F-statistic: | 3.075 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0726 |
Time: | 03:55:59 | Log-Likelihood: | -70.732 |
No. Observations: | 15 | AIC: | 149.5 |
Df Residuals: | 11 | BIC: | 152.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 239.3567 | 533.251 | 0.449 | 0.662 | -934.321 1413.035 |
C(dose)[T.1] | -232.0873 | 742.077 | -0.313 | 0.760 | -1865.388 1401.213 |
expression | -16.2606 | 50.421 | -0.322 | 0.753 | -127.237 94.716 |
expression:C(dose)[T.1] | 26.5383 | 69.954 | 0.379 | 0.712 | -127.430 180.507 |
Omnibus: | 2.019 | Durbin-Watson: | 0.922 |
Prob(Omnibus): | 0.364 | Jarque-Bera (JB): | 1.496 |
Skew: | -0.725 | Prob(JB): | 0.473 |
Kurtosis: | 2.463 | Cond. No. | 1.31e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.890 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 03:55:59 | Log-Likelihood: | -70.830 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 93.5829 | 356.302 | 0.263 | 0.797 | -682.733 869.899 |
C(dose)[T.1] | 49.3617 | 15.896 | 3.105 | 0.009 | 14.727 83.997 |
expression | -2.4736 | 33.681 | -0.073 | 0.943 | -75.858 70.911 |
Omnibus: | 2.841 | Durbin-Watson: | 0.829 |
Prob(Omnibus): | 0.242 | Jarque-Bera (JB): | 1.908 |
Skew: | -0.858 | Prob(JB): | 0.385 |
Kurtosis: | 2.675 | Cond. No. | 487. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:55:59 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.006 |
Model: | OLS | Adj. R-squared: | -0.070 |
Method: | Least Squares | F-statistic: | 0.08217 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.779 |
Time: | 03:55:59 | Log-Likelihood: | -75.253 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -37.1638 | 456.507 | -0.081 | 0.936 | -1023.388 949.060 |
expression | 12.3321 | 43.020 | 0.287 | 0.779 | -80.607 105.271 |
Omnibus: | 0.379 | Durbin-Watson: | 1.551 |
Prob(Omnibus): | 0.827 | Jarque-Bera (JB): | 0.489 |
Skew: | 0.040 | Prob(JB): | 0.783 |
Kurtosis: | 2.119 | Cond. No. | 482. |