AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.283 0.601 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.691
Model: OLS Adj. R-squared: 0.642
Method: Least Squares F-statistic: 14.17
Date: Mon, 27 Jan 2025 Prob (F-statistic): 4.36e-05
Time: 22:53:18 Log-Likelihood: -99.594
No. Observations: 23 AIC: 207.2
Df Residuals: 19 BIC: 211.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 13.8005 208.790 0.066 0.948 -423.203 450.804
C(dose)[T.1] 794.0131 485.626 1.635 0.119 -222.413 1810.440
expression 3.8717 19.997 0.194 0.849 -37.984 45.727
expression:C(dose)[T.1] -66.9980 44.292 -1.513 0.147 -159.702 25.706
Omnibus: 0.145 Durbin-Watson: 1.650
Prob(Omnibus): 0.930 Jarque-Bera (JB): 0.317
Skew: 0.148 Prob(JB): 0.854
Kurtosis: 2.507 Cond. No. 1.46e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.90
Date: Mon, 27 Jan 2025 Prob (F-statistic): 2.46e-05
Time: 22:53:18 Log-Likelihood: -100.90
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 156.3371 192.223 0.813 0.426 -244.634 557.308
C(dose)[T.1] 59.7601 14.894 4.012 0.001 28.691 90.829
expression -9.7855 18.409 -0.532 0.601 -48.186 28.615
Omnibus: 0.664 Durbin-Watson: 1.880
Prob(Omnibus): 0.717 Jarque-Bera (JB): 0.663
Skew: 0.098 Prob(JB): 0.718
Kurtosis: 2.192 Cond. No. 481.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 22:53:19 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.375
Model: OLS Adj. R-squared: 0.346
Method: Least Squares F-statistic: 12.62
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00188
Time: 22:53:19 Log-Likelihood: -107.69
No. Observations: 23 AIC: 219.4
Df Residuals: 21 BIC: 221.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -459.2693 151.820 -3.025 0.006 -774.996 -143.543
expression 50.1352 14.112 3.553 0.002 20.788 79.482
Omnibus: 0.339 Durbin-Watson: 2.079
Prob(Omnibus): 0.844 Jarque-Bera (JB): 0.501
Skew: 0.135 Prob(JB): 0.778
Kurtosis: 2.329 Cond. No. 289.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.029 0.868 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.466
Model: OLS Adj. R-squared: 0.320
Method: Least Squares F-statistic: 3.197
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0663
Time: 22:53:19 Log-Likelihood: -70.597
No. Observations: 15 AIC: 149.2
Df Residuals: 11 BIC: 152.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 344.6540 527.058 0.654 0.527 -815.393 1504.701
C(dose)[T.1] -363.4825 724.964 -0.501 0.626 -1959.118 1232.153
expression -29.7071 56.465 -0.526 0.609 -153.985 94.571
expression:C(dose)[T.1] 44.3241 77.925 0.569 0.581 -127.187 215.835
Omnibus: 2.344 Durbin-Watson: 0.775
Prob(Omnibus): 0.310 Jarque-Bera (JB): 1.658
Skew: -0.783 Prob(JB): 0.437
Kurtosis: 2.554 Cond. No. 1.14e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.911
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0277
Time: 22:53:19 Log-Likelihood: -70.815
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 127.4759 352.941 0.361 0.724 -641.517 896.469
C(dose)[T.1] 48.7772 15.912 3.065 0.010 14.107 83.447
expression -6.4346 37.801 -0.170 0.868 -88.795 75.926
Omnibus: 3.041 Durbin-Watson: 0.773
Prob(Omnibus): 0.219 Jarque-Bera (JB): 2.062
Skew: -0.893 Prob(JB): 0.357
Kurtosis: 2.670 Cond. No. 424.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 22:53:19 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.020
Model: OLS Adj. R-squared: -0.056
Method: Least Squares F-statistic: 0.2587
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.620
Time: 22:53:19 Log-Likelihood: -75.152
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 320.2203 445.551 0.719 0.485 -642.335 1282.775
expression -24.3679 47.911 -0.509 0.620 -127.873 79.137
Omnibus: 0.873 Durbin-Watson: 1.648
Prob(Omnibus): 0.646 Jarque-Bera (JB): 0.671
Skew: 0.041 Prob(JB): 0.715
Kurtosis: 1.967 Cond. No. 417.