AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.283 | 0.601 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.691 |
Model: | OLS | Adj. R-squared: | 0.642 |
Method: | Least Squares | F-statistic: | 14.17 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 4.36e-05 |
Time: | 22:53:18 | Log-Likelihood: | -99.594 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 19 | BIC: | 211.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 13.8005 | 208.790 | 0.066 | 0.948 | -423.203 450.804 |
C(dose)[T.1] | 794.0131 | 485.626 | 1.635 | 0.119 | -222.413 1810.440 |
expression | 3.8717 | 19.997 | 0.194 | 0.849 | -37.984 45.727 |
expression:C(dose)[T.1] | -66.9980 | 44.292 | -1.513 | 0.147 | -159.702 25.706 |
Omnibus: | 0.145 | Durbin-Watson: | 1.650 |
Prob(Omnibus): | 0.930 | Jarque-Bera (JB): | 0.317 |
Skew: | 0.148 | Prob(JB): | 0.854 |
Kurtosis: | 2.507 | Cond. No. | 1.46e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 18.90 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 2.46e-05 |
Time: | 22:53:18 | Log-Likelihood: | -100.90 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 156.3371 | 192.223 | 0.813 | 0.426 | -244.634 557.308 |
C(dose)[T.1] | 59.7601 | 14.894 | 4.012 | 0.001 | 28.691 90.829 |
expression | -9.7855 | 18.409 | -0.532 | 0.601 | -48.186 28.615 |
Omnibus: | 0.664 | Durbin-Watson: | 1.880 |
Prob(Omnibus): | 0.717 | Jarque-Bera (JB): | 0.663 |
Skew: | 0.098 | Prob(JB): | 0.718 |
Kurtosis: | 2.192 | Cond. No. | 481. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:53:19 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.375 |
Model: | OLS | Adj. R-squared: | 0.346 |
Method: | Least Squares | F-statistic: | 12.62 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.00188 |
Time: | 22:53:19 | Log-Likelihood: | -107.69 |
No. Observations: | 23 | AIC: | 219.4 |
Df Residuals: | 21 | BIC: | 221.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -459.2693 | 151.820 | -3.025 | 0.006 | -774.996 -143.543 |
expression | 50.1352 | 14.112 | 3.553 | 0.002 | 20.788 79.482 |
Omnibus: | 0.339 | Durbin-Watson: | 2.079 |
Prob(Omnibus): | 0.844 | Jarque-Bera (JB): | 0.501 |
Skew: | 0.135 | Prob(JB): | 0.778 |
Kurtosis: | 2.329 | Cond. No. | 289. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.029 | 0.868 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.466 |
Model: | OLS | Adj. R-squared: | 0.320 |
Method: | Least Squares | F-statistic: | 3.197 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.0663 |
Time: | 22:53:19 | Log-Likelihood: | -70.597 |
No. Observations: | 15 | AIC: | 149.2 |
Df Residuals: | 11 | BIC: | 152.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 344.6540 | 527.058 | 0.654 | 0.527 | -815.393 1504.701 |
C(dose)[T.1] | -363.4825 | 724.964 | -0.501 | 0.626 | -1959.118 1232.153 |
expression | -29.7071 | 56.465 | -0.526 | 0.609 | -153.985 94.571 |
expression:C(dose)[T.1] | 44.3241 | 77.925 | 0.569 | 0.581 | -127.187 215.835 |
Omnibus: | 2.344 | Durbin-Watson: | 0.775 |
Prob(Omnibus): | 0.310 | Jarque-Bera (JB): | 1.658 |
Skew: | -0.783 | Prob(JB): | 0.437 |
Kurtosis: | 2.554 | Cond. No. | 1.14e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.911 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.0277 |
Time: | 22:53:19 | Log-Likelihood: | -70.815 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 127.4759 | 352.941 | 0.361 | 0.724 | -641.517 896.469 |
C(dose)[T.1] | 48.7772 | 15.912 | 3.065 | 0.010 | 14.107 83.447 |
expression | -6.4346 | 37.801 | -0.170 | 0.868 | -88.795 75.926 |
Omnibus: | 3.041 | Durbin-Watson: | 0.773 |
Prob(Omnibus): | 0.219 | Jarque-Bera (JB): | 2.062 |
Skew: | -0.893 | Prob(JB): | 0.357 |
Kurtosis: | 2.670 | Cond. No. | 424. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:53:19 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.020 |
Model: | OLS | Adj. R-squared: | -0.056 |
Method: | Least Squares | F-statistic: | 0.2587 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.620 |
Time: | 22:53:19 | Log-Likelihood: | -75.152 |
No. Observations: | 15 | AIC: | 154.3 |
Df Residuals: | 13 | BIC: | 155.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 320.2203 | 445.551 | 0.719 | 0.485 | -642.335 1282.775 |
expression | -24.3679 | 47.911 | -0.509 | 0.620 | -127.873 79.137 |
Omnibus: | 0.873 | Durbin-Watson: | 1.648 |
Prob(Omnibus): | 0.646 | Jarque-Bera (JB): | 0.671 |
Skew: | 0.041 | Prob(JB): | 0.715 |
Kurtosis: | 1.967 | Cond. No. | 417. |