AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.257 | 0.618 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.694 |
Model: | OLS | Adj. R-squared: | 0.646 |
Method: | Least Squares | F-statistic: | 14.37 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.98e-05 |
Time: | 03:41:06 | Log-Likelihood: | -99.481 |
No. Observations: | 23 | AIC: | 207.0 |
Df Residuals: | 19 | BIC: | 211.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 191.2617 | 233.893 | 0.818 | 0.424 | -298.282 680.805 |
C(dose)[T.1] | -545.7510 | 376.325 | -1.450 | 0.163 | -1333.408 241.906 |
expression | -14.4571 | 24.665 | -0.586 | 0.565 | -66.081 37.167 |
expression:C(dose)[T.1] | 62.4967 | 39.339 | 1.589 | 0.129 | -19.840 144.834 |
Omnibus: | 0.505 | Durbin-Watson: | 1.860 |
Prob(Omnibus): | 0.777 | Jarque-Bera (JB): | 0.580 |
Skew: | -0.042 | Prob(JB): | 0.748 |
Kurtosis: | 2.226 | Cond. No. | 1.07e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 18.86 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.49e-05 |
Time: | 03:41:06 | Log-Likelihood: | -100.92 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -41.6400 | 189.063 | -0.220 | 0.828 | -436.019 352.739 |
C(dose)[T.1] | 51.9440 | 9.137 | 5.685 | 0.000 | 32.885 71.003 |
expression | 10.1106 | 19.933 | 0.507 | 0.618 | -31.469 51.691 |
Omnibus: | 0.145 | Durbin-Watson: | 1.902 |
Prob(Omnibus): | 0.930 | Jarque-Bera (JB): | 0.302 |
Skew: | 0.154 | Prob(JB): | 0.860 |
Kurtosis: | 2.531 | Cond. No. | 420. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:41:06 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.094 |
Model: | OLS | Adj. R-squared: | 0.050 |
Method: | Least Squares | F-statistic: | 2.167 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.156 |
Time: | 03:41:06 | Log-Likelihood: | -111.98 |
No. Observations: | 23 | AIC: | 228.0 |
Df Residuals: | 21 | BIC: | 230.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -341.9951 | 286.541 | -1.194 | 0.246 | -937.891 253.900 |
expression | 44.1773 | 30.009 | 1.472 | 0.156 | -18.229 106.584 |
Omnibus: | 5.109 | Durbin-Watson: | 2.225 |
Prob(Omnibus): | 0.078 | Jarque-Bera (JB): | 1.694 |
Skew: | 0.154 | Prob(JB): | 0.429 |
Kurtosis: | 1.707 | Cond. No. | 403. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.964 | 0.345 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.504 |
Model: | OLS | Adj. R-squared: | 0.369 |
Method: | Least Squares | F-statistic: | 3.728 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0453 |
Time: | 03:41:06 | Log-Likelihood: | -70.039 |
No. Observations: | 15 | AIC: | 148.1 |
Df Residuals: | 11 | BIC: | 150.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 157.8761 | 896.791 | 0.176 | 0.863 | -1815.948 2131.700 |
C(dose)[T.1] | -526.3971 | 998.775 | -0.527 | 0.609 | -2724.686 1671.892 |
expression | -10.9101 | 108.165 | -0.101 | 0.921 | -248.980 227.160 |
expression:C(dose)[T.1] | 67.6198 | 119.748 | 0.565 | 0.584 | -195.944 331.183 |
Omnibus: | 2.928 | Durbin-Watson: | 0.706 |
Prob(Omnibus): | 0.231 | Jarque-Bera (JB): | 1.912 |
Skew: | -0.685 | Prob(JB): | 0.384 |
Kurtosis: | 1.913 | Cond. No. | 1.68e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.490 |
Model: | OLS | Adj. R-squared: | 0.405 |
Method: | Least Squares | F-statistic: | 5.759 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0176 |
Time: | 03:41:06 | Log-Likelihood: | -70.253 |
No. Observations: | 15 | AIC: | 146.5 |
Df Residuals: | 12 | BIC: | 148.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -299.5084 | 373.837 | -0.801 | 0.439 | -1114.029 515.012 |
C(dose)[T.1] | 37.4845 | 19.276 | 1.945 | 0.076 | -4.514 79.483 |
expression | 44.2611 | 45.074 | 0.982 | 0.345 | -53.946 142.468 |
Omnibus: | 2.730 | Durbin-Watson: | 0.783 |
Prob(Omnibus): | 0.255 | Jarque-Bera (JB): | 1.763 |
Skew: | -0.637 | Prob(JB): | 0.414 |
Kurtosis: | 1.906 | Cond. No. | 424. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:41:06 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.329 |
Model: | OLS | Adj. R-squared: | 0.277 |
Method: | Least Squares | F-statistic: | 6.374 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0254 |
Time: | 03:41:06 | Log-Likelihood: | -72.308 |
No. Observations: | 15 | AIC: | 148.6 |
Df Residuals: | 13 | BIC: | 150.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -736.7860 | 329.049 | -2.239 | 0.043 | -1447.652 -25.920 |
expression | 98.4951 | 39.014 | 2.525 | 0.025 | 14.210 182.780 |
Omnibus: | 0.838 | Durbin-Watson: | 1.246 |
Prob(Omnibus): | 0.658 | Jarque-Bera (JB): | 0.693 |
Skew: | -0.174 | Prob(JB): | 0.707 |
Kurtosis: | 2.006 | Cond. No. | 338. |