AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.781 0.387 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.609
Method: Least Squares F-statistic: 12.43
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.93e-05
Time: 03:38:20 Log-Likelihood: -100.61
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 132.4914 106.092 1.249 0.227 -89.561 354.544
C(dose)[T.1] 30.8969 161.317 0.192 0.850 -306.743 368.537
expression -11.8641 16.052 -0.739 0.469 -45.461 21.733
expression:C(dose)[T.1] 3.1055 24.899 0.125 0.902 -49.008 55.219
Omnibus: 1.231 Durbin-Watson: 1.938
Prob(Omnibus): 0.540 Jarque-Bera (JB): 0.979
Skew: -0.255 Prob(JB): 0.613
Kurtosis: 2.127 Cond. No. 304.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 19.61
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.93e-05
Time: 03:38:20 Log-Likelihood: -100.62
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 123.9747 79.173 1.566 0.133 -41.177 289.127
C(dose)[T.1] 50.9845 9.006 5.661 0.000 32.198 69.771
expression -10.5733 11.965 -0.884 0.387 -35.532 14.385
Omnibus: 1.212 Durbin-Watson: 1.940
Prob(Omnibus): 0.545 Jarque-Bera (JB): 0.983
Skew: -0.266 Prob(JB): 0.612
Kurtosis: 2.138 Cond. No. 123.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:38:20 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.121
Model: OLS Adj. R-squared: 0.079
Method: Least Squares F-statistic: 2.891
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.104
Time: 03:38:20 Log-Likelihood: -111.62
No. Observations: 23 AIC: 227.2
Df Residuals: 21 BIC: 229.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 278.3509 117.018 2.379 0.027 34.999 521.703
expression -30.5971 17.995 -1.700 0.104 -68.020 6.826
Omnibus: 3.534 Durbin-Watson: 2.240
Prob(Omnibus): 0.171 Jarque-Bera (JB): 1.432
Skew: 0.138 Prob(JB): 0.489
Kurtosis: 1.809 Cond. No. 115.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
7.650 0.017 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.675
Model: OLS Adj. R-squared: 0.586
Method: Least Squares F-statistic: 7.600
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00500
Time: 03:38:20 Log-Likelihood: -66.881
No. Observations: 15 AIC: 141.8
Df Residuals: 11 BIC: 144.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 199.8705 188.901 1.058 0.313 -215.898 615.639
C(dose)[T.1] 188.6761 214.747 0.879 0.398 -283.979 661.331
expression -22.0801 31.455 -0.702 0.497 -91.312 47.152
expression:C(dose)[T.1] -21.8118 35.487 -0.615 0.551 -99.917 56.294
Omnibus: 0.540 Durbin-Watson: 0.911
Prob(Omnibus): 0.763 Jarque-Bera (JB): 0.604
Skew: -0.285 Prob(JB): 0.739
Kurtosis: 2.199 Cond. No. 324.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.607
Method: Least Squares F-statistic: 11.82
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00146
Time: 03:38:20 Log-Likelihood: -67.134
No. Observations: 15 AIC: 140.3
Df Residuals: 12 BIC: 142.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 302.6644 85.523 3.539 0.004 116.326 489.002
C(dose)[T.1] 56.9230 12.613 4.513 0.001 29.441 84.405
expression -39.2175 14.179 -2.766 0.017 -70.111 -8.324
Omnibus: 0.560 Durbin-Watson: 0.880
Prob(Omnibus): 0.756 Jarque-Bera (JB): 0.564
Skew: 0.033 Prob(JB): 0.754
Kurtosis: 2.053 Cond. No. 87.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:38:20 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.092
Model: OLS Adj. R-squared: 0.022
Method: Least Squares F-statistic: 1.318
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.272
Time: 03:38:20 Log-Likelihood: -74.576
No. Observations: 15 AIC: 153.2
Df Residuals: 13 BIC: 154.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 246.5251 133.511 1.846 0.088 -41.908 534.958
expression -25.0451 21.818 -1.148 0.272 -72.179 22.089
Omnibus: 0.910 Durbin-Watson: 1.875
Prob(Omnibus): 0.634 Jarque-Bera (JB): 0.683
Skew: 0.042 Prob(JB): 0.711
Kurtosis: 1.958 Cond. No. 86.6