AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.357 | 0.557 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.601 |
Method: | Least Squares | F-statistic: | 12.07 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000119 |
Time: | 04:34:19 | Log-Likelihood: | -100.84 |
No. Observations: | 23 | AIC: | 209.7 |
Df Residuals: | 19 | BIC: | 214.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 41.2180 | 91.266 | 0.452 | 0.657 | -149.804 232.240 |
C(dose)[T.1] | 38.4537 | 102.861 | 0.374 | 0.713 | -176.836 253.743 |
expression | 2.5144 | 17.625 | 0.143 | 0.888 | -34.375 39.404 |
expression:C(dose)[T.1] | 3.6750 | 20.484 | 0.179 | 0.860 | -39.198 46.548 |
Omnibus: | 1.164 | Durbin-Watson: | 1.891 |
Prob(Omnibus): | 0.559 | Jarque-Bera (JB): | 0.865 |
Skew: | 0.131 | Prob(JB): | 0.649 |
Kurtosis: | 2.087 | Cond. No. | 168. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.655 |
Model: | OLS | Adj. R-squared: | 0.621 |
Method: | Least Squares | F-statistic: | 19.00 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.37e-05 |
Time: | 04:34:19 | Log-Likelihood: | -100.86 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 20 | BIC: | 211.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 27.1611 | 45.659 | 0.595 | 0.559 | -68.083 122.405 |
C(dose)[T.1] | 56.8078 | 10.454 | 5.434 | 0.000 | 35.000 78.615 |
expression | 5.2352 | 8.761 | 0.598 | 0.557 | -13.039 23.510 |
Omnibus: | 1.181 | Durbin-Watson: | 1.860 |
Prob(Omnibus): | 0.554 | Jarque-Bera (JB): | 0.849 |
Skew: | 0.080 | Prob(JB): | 0.654 |
Kurtosis: | 2.072 | Cond. No. | 54.1 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:34:19 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.146 |
Model: | OLS | Adj. R-squared: | 0.106 |
Method: | Least Squares | F-statistic: | 3.596 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0718 |
Time: | 04:34:19 | Log-Likelihood: | -111.29 |
No. Observations: | 23 | AIC: | 226.6 |
Df Residuals: | 21 | BIC: | 228.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 182.5828 | 54.657 | 3.341 | 0.003 | 68.917 296.248 |
expression | -21.2122 | 11.187 | -1.896 | 0.072 | -44.476 2.052 |
Omnibus: | 5.176 | Durbin-Watson: | 2.327 |
Prob(Omnibus): | 0.075 | Jarque-Bera (JB): | 1.786 |
Skew: | 0.225 | Prob(JB): | 0.410 |
Kurtosis: | 1.711 | Cond. No. | 41.7 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.051 | 0.178 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.533 |
Model: | OLS | Adj. R-squared: | 0.405 |
Method: | Least Squares | F-statistic: | 4.181 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0334 |
Time: | 04:34:19 | Log-Likelihood: | -69.593 |
No. Observations: | 15 | AIC: | 147.2 |
Df Residuals: | 11 | BIC: | 150.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 150.9906 | 82.400 | 1.832 | 0.094 | -30.371 332.353 |
C(dose)[T.1] | 101.1535 | 163.239 | 0.620 | 0.548 | -258.134 460.441 |
expression | -15.8640 | 15.502 | -1.023 | 0.328 | -49.984 18.256 |
expression:C(dose)[T.1] | -8.5492 | 29.686 | -0.288 | 0.779 | -73.888 56.789 |
Omnibus: | 1.851 | Durbin-Watson: | 0.919 |
Prob(Omnibus): | 0.396 | Jarque-Bera (JB): | 0.888 |
Skew: | -0.596 | Prob(JB): | 0.642 |
Kurtosis: | 2.985 | Cond. No. | 148. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.529 |
Model: | OLS | Adj. R-squared: | 0.451 |
Method: | Least Squares | F-statistic: | 6.745 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0109 |
Time: | 04:34:19 | Log-Likelihood: | -69.650 |
No. Observations: | 15 | AIC: | 145.3 |
Df Residuals: | 12 | BIC: | 147.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 163.2706 | 67.762 | 2.409 | 0.033 | 15.630 310.911 |
C(dose)[T.1] | 54.3575 | 14.985 | 3.627 | 0.003 | 21.707 87.008 |
expression | -18.1953 | 12.705 | -1.432 | 0.178 | -45.878 9.487 |
Omnibus: | 1.751 | Durbin-Watson: | 0.988 |
Prob(Omnibus): | 0.417 | Jarque-Bera (JB): | 0.857 |
Skew: | -0.585 | Prob(JB): | 0.652 |
Kurtosis: | 2.950 | Cond. No. | 52.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:34:19 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.013 |
Model: | OLS | Adj. R-squared: | -0.063 |
Method: | Least Squares | F-statistic: | 0.1719 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.685 |
Time: | 04:34:19 | Log-Likelihood: | -75.202 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 132.2040 | 93.509 | 1.414 | 0.181 | -69.809 334.217 |
expression | -7.1119 | 17.156 | -0.415 | 0.685 | -44.175 29.951 |
Omnibus: | 2.035 | Durbin-Watson: | 1.682 |
Prob(Omnibus): | 0.361 | Jarque-Bera (JB): | 0.992 |
Skew: | 0.157 | Prob(JB): | 0.609 |
Kurtosis: | 1.780 | Cond. No. | 52.2 |