AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.076 0.312 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.667
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 12.69
Date: Mon, 27 Jan 2025 Prob (F-statistic): 8.74e-05
Time: 21:39:56 Log-Likelihood: -100.45
No. Observations: 23 AIC: 208.9
Df Residuals: 19 BIC: 213.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -0.3723 76.196 -0.005 0.996 -159.852 159.107
C(dose)[T.1] 26.2244 137.027 0.191 0.850 -260.577 313.026
expression 11.0734 15.410 0.719 0.481 -21.179 43.326
expression:C(dose)[T.1] 2.4404 24.316 0.100 0.921 -48.455 53.335
Omnibus: 0.230 Durbin-Watson: 2.257
Prob(Omnibus): 0.892 Jarque-Bera (JB): 0.423
Skew: -0.117 Prob(JB): 0.809
Kurtosis: 2.378 Cond. No. 223.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.667
Model: OLS Adj. R-squared: 0.634
Method: Least Squares F-statistic: 20.03
Date: Mon, 27 Jan 2025 Prob (F-statistic): 1.68e-05
Time: 21:39:56 Log-Likelihood: -100.46
No. Observations: 23 AIC: 206.9
Df Residuals: 20 BIC: 210.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -5.2029 57.587 -0.090 0.929 -125.327 114.922
C(dose)[T.1] 39.8830 15.533 2.568 0.018 7.482 72.284
expression 12.0534 11.622 1.037 0.312 -12.189 36.296
Omnibus: 0.311 Durbin-Watson: 2.271
Prob(Omnibus): 0.856 Jarque-Bera (JB): 0.482
Skew: -0.128 Prob(JB): 0.786
Kurtosis: 2.339 Cond. No. 79.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 21:39:56 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.557
Model: OLS Adj. R-squared: 0.536
Method: Least Squares F-statistic: 26.42
Date: Mon, 27 Jan 2025 Prob (F-statistic): 4.31e-05
Time: 21:39:56 Log-Likelihood: -103.74
No. Observations: 23 AIC: 211.5
Df Residuals: 21 BIC: 213.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -122.2719 39.587 -3.089 0.006 -204.597 -39.947
expression 36.9752 7.193 5.140 0.000 22.016 51.934
Omnibus: 0.512 Durbin-Watson: 2.901
Prob(Omnibus): 0.774 Jarque-Bera (JB): 0.591
Skew: 0.091 Prob(JB): 0.744
Kurtosis: 2.236 Cond. No. 46.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.065 0.803 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.480
Model: OLS Adj. R-squared: 0.338
Method: Least Squares F-statistic: 3.381
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0580
Time: 21:39:56 Log-Likelihood: -70.400
No. Observations: 15 AIC: 148.8
Df Residuals: 11 BIC: 151.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 3.8015 139.819 0.027 0.979 -303.937 311.540
C(dose)[T.1] 186.6748 178.626 1.045 0.318 -206.478 579.828
expression 15.3015 33.507 0.457 0.657 -58.448 89.050
expression:C(dose)[T.1] -32.5048 42.271 -0.769 0.458 -125.543 60.534
Omnibus: 6.227 Durbin-Watson: 0.901
Prob(Omnibus): 0.044 Jarque-Bera (JB): 3.618
Skew: -1.177 Prob(JB): 0.164
Kurtosis: 3.503 Cond. No. 142.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 4.944
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0272
Time: 21:39:56 Log-Likelihood: -70.792
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 88.7278 84.268 1.053 0.313 -94.875 272.331
C(dose)[T.1] 49.8859 15.928 3.132 0.009 15.182 84.590
expression -5.1222 20.077 -0.255 0.803 -48.866 38.621
Omnibus: 3.439 Durbin-Watson: 0.798
Prob(Omnibus): 0.179 Jarque-Bera (JB): 2.162
Skew: -0.927 Prob(JB): 0.339
Kurtosis: 2.855 Cond. No. 48.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 21:39:56 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.073
Method: Least Squares F-statistic: 0.04685
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.832
Time: 21:39:56 Log-Likelihood: -75.273
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 70.2023 108.877 0.645 0.530 -165.011 305.416
expression 5.5471 25.627 0.216 0.832 -49.817 60.911
Omnibus: 0.643 Durbin-Watson: 1.595
Prob(Omnibus): 0.725 Jarque-Bera (JB): 0.606
Skew: 0.113 Prob(JB): 0.738
Kurtosis: 2.041 Cond. No. 48.1