AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.609 0.444 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.667
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 12.67
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.85e-05
Time: 03:53:14 Log-Likelihood: -100.47
No. Observations: 23 AIC: 208.9
Df Residuals: 19 BIC: 213.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 47.4180 49.349 0.961 0.349 -55.871 150.707
C(dose)[T.1] 6.6244 73.361 0.090 0.929 -146.922 160.171
expression 1.6309 11.763 0.139 0.891 -22.989 26.251
expression:C(dose)[T.1] 11.2636 17.527 0.643 0.528 -25.420 47.947
Omnibus: 0.082 Durbin-Watson: 1.841
Prob(Omnibus): 0.960 Jarque-Bera (JB): 0.052
Skew: -0.035 Prob(JB): 0.974
Kurtosis: 2.777 Cond. No. 93.9

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.625
Method: Least Squares F-statistic: 19.36
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.10e-05
Time: 03:53:14 Log-Likelihood: -100.72
No. Observations: 23 AIC: 207.4
Df Residuals: 20 BIC: 210.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 26.2940 36.265 0.725 0.477 -49.354 101.942
C(dose)[T.1] 53.4328 8.640 6.184 0.000 35.410 71.456
expression 6.7045 8.591 0.780 0.444 -11.216 24.625
Omnibus: 0.042 Durbin-Watson: 1.891
Prob(Omnibus): 0.979 Jarque-Bera (JB): 0.079
Skew: 0.031 Prob(JB): 0.961
Kurtosis: 2.721 Cond. No. 37.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:53:14 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.008
Model: OLS Adj. R-squared: -0.039
Method: Least Squares F-statistic: 0.1730
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.682
Time: 03:53:14 Log-Likelihood: -113.01
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.9810 59.900 0.918 0.369 -69.588 179.550
expression 5.9509 14.306 0.416 0.682 -23.801 35.703
Omnibus: 3.285 Durbin-Watson: 2.484
Prob(Omnibus): 0.194 Jarque-Bera (JB): 1.510
Skew: 0.252 Prob(JB): 0.470
Kurtosis: 1.850 Cond. No. 36.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.006 0.941 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.472
Model: OLS Adj. R-squared: 0.328
Method: Least Squares F-statistic: 3.281
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0623
Time: 03:53:14 Log-Likelihood: -70.507
No. Observations: 15 AIC: 149.0
Df Residuals: 11 BIC: 151.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 10.7532 98.794 0.109 0.915 -206.690 228.197
C(dose)[T.1] 144.8282 140.125 1.034 0.324 -163.585 453.241
expression 11.9001 20.597 0.578 0.575 -33.433 57.233
expression:C(dose)[T.1] -18.8080 27.036 -0.696 0.501 -78.313 40.697
Omnibus: 2.093 Durbin-Watson: 0.875
Prob(Omnibus): 0.351 Jarque-Bera (JB): 1.500
Skew: -0.738 Prob(JB): 0.472
Kurtosis: 2.529 Cond. No. 132.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.890
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0280
Time: 03:53:14 Log-Likelihood: -70.829
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 62.7412 63.214 0.993 0.341 -74.991 200.473
C(dose)[T.1] 48.3335 19.457 2.484 0.029 5.940 90.727
expression 0.9842 13.052 0.075 0.941 -27.453 29.422
Omnibus: 2.745 Durbin-Watson: 0.802
Prob(Omnibus): 0.253 Jarque-Bera (JB): 1.887
Skew: -0.848 Prob(JB): 0.389
Kurtosis: 2.624 Cond. No. 44.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:53:14 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.166
Model: OLS Adj. R-squared: 0.102
Method: Least Squares F-statistic: 2.582
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.132
Time: 03:53:14 Log-Likelihood: -73.941
No. Observations: 15 AIC: 151.9
Df Residuals: 13 BIC: 153.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -11.2177 65.928 -0.170 0.868 -153.646 131.211
expression 20.0536 12.480 1.607 0.132 -6.907 47.014
Omnibus: 0.725 Durbin-Watson: 1.214
Prob(Omnibus): 0.696 Jarque-Bera (JB): 0.629
Skew: 0.081 Prob(JB): 0.730
Kurtosis: 2.010 Cond. No. 38.8