AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.457 0.507 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.685
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 13.76
Date: Thu, 03 Apr 2025 Prob (F-statistic): 5.27e-05
Time: 22:58:22 Log-Likelihood: -99.829
No. Observations: 23 AIC: 207.7
Df Residuals: 19 BIC: 212.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -11.3686 110.238 -0.103 0.919 -242.099 219.362
C(dose)[T.1] 246.3128 145.672 1.691 0.107 -58.582 551.207
expression 9.6142 16.139 0.596 0.558 -24.165 43.393
expression:C(dose)[T.1] -26.5823 20.510 -1.296 0.210 -69.510 16.345
Omnibus: 1.242 Durbin-Watson: 2.109
Prob(Omnibus): 0.537 Jarque-Bera (JB): 0.927
Skew: 0.188 Prob(JB): 0.629
Kurtosis: 2.091 Cond. No. 342.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 19.15
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.26e-05
Time: 22:58:22 Log-Likelihood: -100.80
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 100.8994 69.335 1.455 0.161 -43.731 245.529
C(dose)[T.1] 58.0417 11.119 5.220 0.000 34.848 81.236
expression -6.8454 10.127 -0.676 0.507 -27.970 14.279
Omnibus: 1.072 Durbin-Watson: 1.809
Prob(Omnibus): 0.585 Jarque-Bera (JB): 0.810
Skew: 0.068 Prob(JB): 0.667
Kurtosis: 2.091 Cond. No. 118.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:58:22 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.189
Model: OLS Adj. R-squared: 0.151
Method: Least Squares F-statistic: 4.908
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0379
Time: 22:58:22 Log-Likelihood: -110.69
No. Observations: 23 AIC: 225.4
Df Residuals: 21 BIC: 227.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -107.9176 84.945 -1.270 0.218 -284.571 68.736
expression 26.2444 11.846 2.215 0.038 1.608 50.880
Omnibus: 3.644 Durbin-Watson: 2.319
Prob(Omnibus): 0.162 Jarque-Bera (JB): 1.790
Skew: 0.372 Prob(JB): 0.409
Kurtosis: 1.854 Cond. No. 95.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.012 0.334 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.496
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 3.602
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0495
Time: 22:58:22 Log-Likelihood: -70.167
No. Observations: 15 AIC: 148.3
Df Residuals: 11 BIC: 151.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 33.6694 111.228 0.303 0.768 -211.142 278.481
C(dose)[T.1] 15.2457 132.021 0.115 0.910 -275.331 305.822
expression 5.3393 17.498 0.305 0.766 -33.173 43.851
expression:C(dose)[T.1] 6.2306 21.225 0.294 0.775 -40.484 52.945
Omnibus: 0.365 Durbin-Watson: 0.975
Prob(Omnibus): 0.833 Jarque-Bera (JB): 0.496
Skew: -0.219 Prob(JB): 0.780
Kurtosis: 2.224 Cond. No. 152.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.492
Model: OLS Adj. R-squared: 0.407
Method: Least Squares F-statistic: 5.802
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0173
Time: 22:58:22 Log-Likelihood: -70.226
No. Observations: 15 AIC: 146.5
Df Residuals: 12 BIC: 148.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 6.8949 61.191 0.113 0.912 -126.428 140.218
C(dose)[T.1] 53.7012 15.765 3.406 0.005 19.352 88.050
expression 9.5739 9.519 1.006 0.334 -11.166 30.314
Omnibus: 0.455 Durbin-Watson: 0.913
Prob(Omnibus): 0.797 Jarque-Bera (JB): 0.552
Skew: -0.251 Prob(JB): 0.759
Kurtosis: 2.206 Cond. No. 51.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:58:22 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.077
Method: Least Squares F-statistic: 0.0008656
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.977
Time: 22:58:23 Log-Likelihood: -75.300
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 91.4697 75.359 1.214 0.246 -71.333 254.273
expression 0.3618 12.298 0.029 0.977 -26.206 26.930
Omnibus: 0.575 Durbin-Watson: 1.625
Prob(Omnibus): 0.750 Jarque-Bera (JB): 0.571
Skew: 0.052 Prob(JB): 0.752
Kurtosis: 2.050 Cond. No. 46.6