AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.699 | 0.116 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.691 |
Model: | OLS | Adj. R-squared: | 0.642 |
Method: | Least Squares | F-statistic: | 14.16 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.39e-05 |
Time: | 04:07:31 | Log-Likelihood: | -99.602 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 19 | BIC: | 211.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 452.6129 | 373.318 | 1.212 | 0.240 | -328.750 1233.976 |
C(dose)[T.1] | 9.7747 | 476.654 | 0.021 | 0.984 | -987.874 1007.423 |
expression | -40.4386 | 37.888 | -1.067 | 0.299 | -119.738 38.861 |
expression:C(dose)[T.1] | 4.4530 | 48.357 | 0.092 | 0.928 | -96.760 105.666 |
Omnibus: | 0.561 | Durbin-Watson: | 1.836 |
Prob(Omnibus): | 0.755 | Jarque-Bera (JB): | 0.604 |
Skew: | 0.016 | Prob(JB): | 0.739 |
Kurtosis: | 2.206 | Cond. No. | 1.54e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.691 |
Model: | OLS | Adj. R-squared: | 0.660 |
Method: | Least Squares | F-statistic: | 22.34 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.99e-06 |
Time: | 04:07:31 | Log-Likelihood: | -99.607 |
No. Observations: | 23 | AIC: | 205.2 |
Df Residuals: | 20 | BIC: | 208.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 425.6820 | 226.199 | 1.882 | 0.074 | -46.162 897.526 |
C(dose)[T.1] | 53.6606 | 8.234 | 6.517 | 0.000 | 36.484 70.837 |
expression | -37.7051 | 22.952 | -1.643 | 0.116 | -85.583 10.173 |
Omnibus: | 0.564 | Durbin-Watson: | 1.850 |
Prob(Omnibus): | 0.754 | Jarque-Bera (JB): | 0.607 |
Skew: | 0.042 | Prob(JB): | 0.738 |
Kurtosis: | 2.208 | Cond. No. | 548. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:07:31 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.034 |
Model: | OLS | Adj. R-squared: | -0.012 |
Method: | Least Squares | F-statistic: | 0.7437 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.398 |
Time: | 04:07:31 | Log-Likelihood: | -112.70 |
No. Observations: | 23 | AIC: | 229.4 |
Df Residuals: | 21 | BIC: | 231.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 416.0908 | 390.119 | 1.067 | 0.298 | -395.206 1227.387 |
expression | -34.1282 | 39.575 | -0.862 | 0.398 | -116.428 48.172 |
Omnibus: | 2.743 | Durbin-Watson: | 2.589 |
Prob(Omnibus): | 0.254 | Jarque-Bera (JB): | 1.441 |
Skew: | 0.283 | Prob(JB): | 0.486 |
Kurtosis: | 1.912 | Cond. No. | 548. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
5.569 | 0.036 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.669 |
Model: | OLS | Adj. R-squared: | 0.578 |
Method: | Least Squares | F-statistic: | 7.395 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00551 |
Time: | 04:07:31 | Log-Likelihood: | -67.018 |
No. Observations: | 15 | AIC: | 142.0 |
Df Residuals: | 11 | BIC: | 144.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 421.9496 | 275.010 | 1.534 | 0.153 | -183.344 1027.243 |
C(dose)[T.1] | 629.8032 | 480.683 | 1.310 | 0.217 | -428.173 1687.779 |
expression | -36.3556 | 28.186 | -1.290 | 0.224 | -98.392 25.681 |
expression:C(dose)[T.1] | -60.7448 | 49.693 | -1.222 | 0.247 | -170.119 48.629 |
Omnibus: | 0.580 | Durbin-Watson: | 1.545 |
Prob(Omnibus): | 0.748 | Jarque-Bera (JB): | 0.442 |
Skew: | -0.368 | Prob(JB): | 0.802 |
Kurtosis: | 2.592 | Cond. No. | 912. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.624 |
Model: | OLS | Adj. R-squared: | 0.561 |
Method: | Least Squares | F-statistic: | 9.936 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00285 |
Time: | 04:07:31 | Log-Likelihood: | -67.974 |
No. Observations: | 15 | AIC: | 141.9 |
Df Residuals: | 12 | BIC: | 144.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 612.5149 | 231.174 | 2.650 | 0.021 | 108.829 1116.200 |
C(dose)[T.1] | 42.4347 | 13.320 | 3.186 | 0.008 | 13.413 71.456 |
expression | -55.8977 | 23.687 | -2.360 | 0.036 | -107.506 -4.289 |
Omnibus: | 1.348 | Durbin-Watson: | 1.606 |
Prob(Omnibus): | 0.510 | Jarque-Bera (JB): | 0.774 |
Skew: | -0.544 | Prob(JB): | 0.679 |
Kurtosis: | 2.770 | Cond. No. | 349. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:07:31 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.305 |
Model: | OLS | Adj. R-squared: | 0.252 |
Method: | Least Squares | F-statistic: | 5.707 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0328 |
Time: | 04:07:31 | Log-Likelihood: | -72.571 |
No. Observations: | 15 | AIC: | 149.1 |
Df Residuals: | 13 | BIC: | 150.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 792.3929 | 292.613 | 2.708 | 0.018 | 160.241 1424.545 |
expression | -72.1305 | 30.194 | -2.389 | 0.033 | -137.361 -6.900 |
Omnibus: | 0.537 | Durbin-Watson: | 1.793 |
Prob(Omnibus): | 0.765 | Jarque-Bera (JB): | 0.554 |
Skew: | 0.003 | Prob(JB): | 0.758 |
Kurtosis: | 2.058 | Cond. No. | 338. |