AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.013 | 0.910 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.594 |
Method: | Least Squares | F-statistic: | 11.74 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000141 |
Time: | 04:01:29 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 64.6139 | 242.180 | 0.267 | 0.792 | -442.275 571.503 |
C(dose)[T.1] | 107.1183 | 484.093 | 0.221 | 0.827 | -906.101 1120.337 |
expression | -0.9984 | 23.229 | -0.043 | 0.966 | -49.618 47.621 |
expression:C(dose)[T.1] | -5.4671 | 48.186 | -0.113 | 0.911 | -106.321 95.387 |
Omnibus: | 0.244 | Durbin-Watson: | 1.906 |
Prob(Omnibus): | 0.885 | Jarque-Bera (JB): | 0.436 |
Skew: | 0.059 | Prob(JB): | 0.804 |
Kurtosis: | 2.336 | Cond. No. | 1.29e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.51 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.82e-05 |
Time: | 04:01:29 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 77.8559 | 206.899 | 0.376 | 0.711 | -353.727 509.439 |
C(dose)[T.1] | 52.2148 | 13.160 | 3.968 | 0.001 | 24.763 79.667 |
expression | -2.2690 | 19.843 | -0.114 | 0.910 | -43.661 39.123 |
Omnibus: | 0.310 | Durbin-Watson: | 1.907 |
Prob(Omnibus): | 0.856 | Jarque-Bera (JB): | 0.479 |
Skew: | 0.079 | Prob(JB): | 0.787 |
Kurtosis: | 2.311 | Cond. No. | 487. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:01:29 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.373 |
Model: | OLS | Adj. R-squared: | 0.343 |
Method: | Least Squares | F-statistic: | 12.51 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00196 |
Time: | 04:01:29 | Log-Likelihood: | -107.73 |
No. Observations: | 23 | AIC: | 219.5 |
Df Residuals: | 21 | BIC: | 221.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 700.8967 | 175.748 | 3.988 | 0.001 | 335.408 1066.385 |
expression | -60.9861 | 17.245 | -3.536 | 0.002 | -96.850 -25.122 |
Omnibus: | 0.181 | Durbin-Watson: | 2.637 |
Prob(Omnibus): | 0.914 | Jarque-Bera (JB): | 0.392 |
Skew: | 0.002 | Prob(JB): | 0.822 |
Kurtosis: | 2.360 | Cond. No. | 317. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.381 | 0.091 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.574 |
Model: | OLS | Adj. R-squared: | 0.458 |
Method: | Least Squares | F-statistic: | 4.949 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0205 |
Time: | 04:01:29 | Log-Likelihood: | -68.893 |
No. Observations: | 15 | AIC: | 145.8 |
Df Residuals: | 11 | BIC: | 148.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -403.2464 | 438.023 | -0.921 | 0.377 | -1367.329 560.836 |
C(dose)[T.1] | -182.2995 | 653.947 | -0.279 | 0.786 | -1621.626 1257.027 |
expression | 44.2400 | 41.159 | 1.075 | 0.305 | -46.350 134.831 |
expression:C(dose)[T.1] | 20.7148 | 60.917 | 0.340 | 0.740 | -113.363 154.792 |
Omnibus: | 0.001 | Durbin-Watson: | 1.234 |
Prob(Omnibus): | 0.999 | Jarque-Bera (JB): | 0.162 |
Skew: | -0.001 | Prob(JB): | 0.922 |
Kurtosis: | 2.491 | Cond. No. | 1.28e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.570 |
Model: | OLS | Adj. R-squared: | 0.498 |
Method: | Least Squares | F-statistic: | 7.951 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00633 |
Time: | 04:01:29 | Log-Likelihood: | -68.971 |
No. Observations: | 15 | AIC: | 143.9 |
Df Residuals: | 12 | BIC: | 146.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -503.8558 | 310.867 | -1.621 | 0.131 | -1181.176 173.464 |
C(dose)[T.1] | 40.0127 | 14.773 | 2.709 | 0.019 | 7.826 72.199 |
expression | 53.6966 | 29.204 | 1.839 | 0.091 | -9.933 117.326 |
Omnibus: | 0.106 | Durbin-Watson: | 1.071 |
Prob(Omnibus): | 0.948 | Jarque-Bera (JB): | 0.266 |
Skew: | -0.158 | Prob(JB): | 0.875 |
Kurtosis: | 2.429 | Cond. No. | 486. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:01:29 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.307 |
Model: | OLS | Adj. R-squared: | 0.254 |
Method: | Least Squares | F-statistic: | 5.759 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0321 |
Time: | 04:01:29 | Log-Likelihood: | -72.550 |
No. Observations: | 15 | AIC: | 149.1 |
Df Residuals: | 13 | BIC: | 150.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -769.4906 | 359.771 | -2.139 | 0.052 | -1546.728 7.746 |
expression | 80.4409 | 33.519 | 2.400 | 0.032 | 8.027 152.854 |
Omnibus: | 1.278 | Durbin-Watson: | 2.050 |
Prob(Omnibus): | 0.528 | Jarque-Bera (JB): | 0.550 |
Skew: | 0.468 | Prob(JB): | 0.760 |
Kurtosis: | 2.948 | Cond. No. | 460. |