AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.290 | 0.269 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.674 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 13.09 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 7.21e-05 |
Time: | 11:50:19 | Log-Likelihood: | -100.22 |
No. Observations: | 23 | AIC: | 208.4 |
Df Residuals: | 19 | BIC: | 213.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 145.2387 | 169.458 | 0.857 | 0.402 | -209.442 499.919 |
C(dose)[T.1] | 164.4615 | 252.756 | 0.651 | 0.523 | -364.563 693.486 |
expression | -20.0007 | 37.209 | -0.538 | 0.597 | -97.880 57.879 |
expression:C(dose)[T.1] | -26.1489 | 56.704 | -0.461 | 0.650 | -144.832 92.534 |
Omnibus: | 0.319 | Durbin-Watson: | 1.759 |
Prob(Omnibus): | 0.853 | Jarque-Bera (JB): | 0.411 |
Skew: | -0.237 | Prob(JB): | 0.814 |
Kurtosis: | 2.549 | Cond. No. | 345. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.670 |
Model: | OLS | Adj. R-squared: | 0.637 |
Method: | Least Squares | F-statistic: | 20.33 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 1.52e-05 |
Time: | 11:50:19 | Log-Likelihood: | -100.34 |
No. Observations: | 23 | AIC: | 206.7 |
Df Residuals: | 20 | BIC: | 210.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 196.4853 | 125.388 | 1.567 | 0.133 | -65.070 458.041 |
C(dose)[T.1] | 47.9935 | 9.715 | 4.940 | 0.000 | 27.729 68.258 |
expression | -31.2603 | 27.519 | -1.136 | 0.269 | -88.665 26.144 |
Omnibus: | 0.312 | Durbin-Watson: | 1.789 |
Prob(Omnibus): | 0.856 | Jarque-Bera (JB): | 0.478 |
Skew: | -0.181 | Prob(JB): | 0.788 |
Kurtosis: | 2.393 | Cond. No. | 139. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 11:50:19 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.268 |
Model: | OLS | Adj. R-squared: | 0.233 |
Method: | Least Squares | F-statistic: | 7.690 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0114 |
Time: | 11:50:19 | Log-Likelihood: | -109.52 |
No. Observations: | 23 | AIC: | 223.0 |
Df Residuals: | 21 | BIC: | 225.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 513.6776 | 156.617 | 3.280 | 0.004 | 187.976 839.379 |
expression | -97.0914 | 35.013 | -2.773 | 0.011 | -169.905 -24.278 |
Omnibus: | 1.604 | Durbin-Watson: | 1.872 |
Prob(Omnibus): | 0.448 | Jarque-Bera (JB): | 0.995 |
Skew: | -0.121 | Prob(JB): | 0.608 |
Kurtosis: | 2.010 | Cond. No. | 119. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.008 | 0.929 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.461 |
Model: | OLS | Adj. R-squared: | 0.314 |
Method: | Least Squares | F-statistic: | 3.133 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0695 |
Time: | 11:50:19 | Log-Likelihood: | -70.668 |
No. Observations: | 15 | AIC: | 149.3 |
Df Residuals: | 11 | BIC: | 152.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -41.2559 | 294.161 | -0.140 | 0.891 | -688.700 606.188 |
C(dose)[T.1] | 214.6093 | 341.267 | 0.629 | 0.542 | -536.515 965.734 |
expression | 25.5605 | 69.125 | 0.370 | 0.719 | -126.582 177.703 |
expression:C(dose)[T.1] | -39.4465 | 81.021 | -0.487 | 0.636 | -217.771 138.878 |
Omnibus: | 3.269 | Durbin-Watson: | 0.818 |
Prob(Omnibus): | 0.195 | Jarque-Bera (JB): | 2.239 |
Skew: | -0.931 | Prob(JB): | 0.326 |
Kurtosis: | 2.664 | Cond. No. | 272. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.892 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0279 |
Time: | 11:50:19 | Log-Likelihood: | -70.828 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 80.8349 | 148.806 | 0.543 | 0.597 | -243.387 405.056 |
C(dose)[T.1] | 48.6707 | 16.775 | 2.901 | 0.013 | 12.120 85.221 |
expression | -3.1529 | 34.892 | -0.090 | 0.929 | -79.176 72.870 |
Omnibus: | 2.702 | Durbin-Watson: | 0.805 |
Prob(Omnibus): | 0.259 | Jarque-Bera (JB): | 1.880 |
Skew: | -0.844 | Prob(JB): | 0.391 |
Kurtosis: | 2.597 | Cond. No. | 84.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.00629 |
Time: | 11:50:19 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.063 |
Model: | OLS | Adj. R-squared: | -0.009 |
Method: | Least Squares | F-statistic: | 0.8702 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.368 |
Time: | 11:50:20 | Log-Likelihood: | -74.814 |
No. Observations: | 15 | AIC: | 153.6 |
Df Residuals: | 13 | BIC: | 155.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 252.9471 | 171.030 | 1.479 | 0.163 | -116.540 622.434 |
expression | -38.2599 | 41.014 | -0.933 | 0.368 | -126.865 50.346 |
Omnibus: | 0.959 | Durbin-Watson: | 1.616 |
Prob(Omnibus): | 0.619 | Jarque-Bera (JB): | 0.695 |
Skew: | 0.017 | Prob(JB): | 0.706 |
Kurtosis: | 1.946 | Cond. No. | 76.7 |