AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.077 0.785 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.673
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 13.03
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.43e-05
Time: 04:19:36 Log-Likelihood: -100.25
No. Observations: 23 AIC: 208.5
Df Residuals: 19 BIC: 213.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 41.0081 69.948 0.586 0.565 -105.395 187.411
C(dose)[T.1] 245.9105 169.645 1.450 0.163 -109.161 600.982
expression 2.1462 11.331 0.189 0.852 -21.569 25.862
expression:C(dose)[T.1] -33.1812 29.022 -1.143 0.267 -93.925 27.562
Omnibus: 0.167 Durbin-Watson: 1.965
Prob(Omnibus): 0.920 Jarque-Bera (JB): 0.071
Skew: 0.101 Prob(JB): 0.965
Kurtosis: 2.818 Cond. No. 274.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.60
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.73e-05
Time: 04:19:36 Log-Likelihood: -101.02
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 72.1156 64.933 1.111 0.280 -63.331 207.562
C(dose)[T.1] 52.2575 9.582 5.454 0.000 32.270 72.245
expression -2.9115 10.511 -0.277 0.785 -24.838 19.015
Omnibus: 0.141 Durbin-Watson: 1.810
Prob(Omnibus): 0.932 Jarque-Bera (JB): 0.361
Skew: 0.036 Prob(JB): 0.835
Kurtosis: 2.391 Cond. No. 91.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:19:36 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.130
Model: OLS Adj. R-squared: 0.089
Method: Least Squares F-statistic: 3.151
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0904
Time: 04:19:36 Log-Likelihood: -111.50
No. Observations: 23 AIC: 227.0
Df Residuals: 21 BIC: 229.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 236.4056 88.532 2.670 0.014 52.293 420.518
expression -26.2319 14.779 -1.775 0.090 -56.966 4.502
Omnibus: 0.187 Durbin-Watson: 2.132
Prob(Omnibus): 0.911 Jarque-Bera (JB): 0.383
Skew: -0.132 Prob(JB): 0.826
Kurtosis: 2.425 Cond. No. 81.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
6.336 0.027 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.573
Method: Least Squares F-statistic: 7.250
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00591
Time: 04:19:36 Log-Likelihood: -67.118
No. Observations: 15 AIC: 142.2
Df Residuals: 11 BIC: 145.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -9.8684 122.461 -0.081 0.937 -279.402 259.666
C(dose)[T.1] -75.2051 145.568 -0.517 0.616 -395.598 245.187
expression 12.5015 19.748 0.633 0.540 -30.963 55.966
expression:C(dose)[T.1] 21.4033 23.724 0.902 0.386 -30.812 73.619
Omnibus: 7.781 Durbin-Watson: 1.547
Prob(Omnibus): 0.020 Jarque-Bera (JB): 4.766
Skew: -1.337 Prob(JB): 0.0923
Kurtosis: 3.690 Cond. No. 206.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.639
Model: OLS Adj. R-squared: 0.579
Method: Least Squares F-statistic: 10.63
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00220
Time: 04:19:36 Log-Likelihood: -67.653
No. Observations: 15 AIC: 141.3
Df Residuals: 12 BIC: 143.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -101.5666 67.777 -1.499 0.160 -249.241 46.107
C(dose)[T.1] 55.5936 12.984 4.282 0.001 27.304 83.884
expression 27.3321 10.858 2.517 0.027 3.674 50.990
Omnibus: 6.696 Durbin-Watson: 1.611
Prob(Omnibus): 0.035 Jarque-Bera (JB): 4.063
Skew: -1.253 Prob(JB): 0.131
Kurtosis: 3.467 Cond. No. 67.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:19:36 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.088
Model: OLS Adj. R-squared: 0.018
Method: Least Squares F-statistic: 1.257
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.283
Time: 04:19:36 Log-Likelihood: -74.608
No. Observations: 15 AIC: 153.2
Df Residuals: 13 BIC: 154.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -16.7890 99.014 -0.170 0.868 -230.696 197.118
expression 18.2324 16.265 1.121 0.283 -16.906 53.371
Omnibus: 0.561 Durbin-Watson: 2.264
Prob(Omnibus): 0.756 Jarque-Bera (JB): 0.600
Skew: -0.216 Prob(JB): 0.741
Kurtosis: 2.120 Cond. No. 63.8