AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.873 0.063 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.706
Model: OLS Adj. R-squared: 0.660
Method: Least Squares F-statistic: 15.23
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.73e-05
Time: 19:31:00 Log-Likelihood: -99.016
No. Observations: 23 AIC: 206.0
Df Residuals: 19 BIC: 210.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -42.1928 62.938 -0.670 0.511 -173.923 89.537
C(dose)[T.1] 33.1847 119.041 0.279 0.783 -215.972 282.341
expression 12.7386 8.283 1.538 0.141 -4.597 30.074
expression:C(dose)[T.1] 2.0546 15.248 0.135 0.894 -29.860 33.969
Omnibus: 0.964 Durbin-Watson: 1.821
Prob(Omnibus): 0.618 Jarque-Bera (JB): 0.780
Skew: -0.420 Prob(JB): 0.677
Kurtosis: 2.671 Cond. No. 272.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.706
Model: OLS Adj. R-squared: 0.677
Method: Least Squares F-statistic: 24.01
Date: Tue, 28 Jan 2025 Prob (F-statistic): 4.83e-06
Time: 19:31:00 Log-Likelihood: -99.027
No. Observations: 23 AIC: 204.1
Df Residuals: 20 BIC: 207.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -46.7804 51.618 -0.906 0.376 -154.453 60.892
C(dose)[T.1] 49.1838 8.300 5.926 0.000 31.870 66.497
expression 13.3449 6.781 1.968 0.063 -0.801 27.490
Omnibus: 0.967 Durbin-Watson: 1.836
Prob(Omnibus): 0.617 Jarque-Bera (JB): 0.840
Skew: -0.424 Prob(JB): 0.657
Kurtosis: 2.602 Cond. No. 102.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 19:31:00 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.190
Model: OLS Adj. R-squared: 0.151
Method: Least Squares F-statistic: 4.918
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0377
Time: 19:31:00 Log-Likelihood: -110.68
No. Observations: 23 AIC: 225.4
Df Residuals: 21 BIC: 227.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -102.1086 82.244 -1.242 0.228 -273.143 68.926
expression 23.5634 10.625 2.218 0.038 1.468 45.659
Omnibus: 0.943 Durbin-Watson: 2.453
Prob(Omnibus): 0.624 Jarque-Bera (JB): 0.792
Skew: 0.141 Prob(JB): 0.673
Kurtosis: 2.136 Cond. No. 99.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.504 0.086 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.683
Model: OLS Adj. R-squared: 0.596
Method: Least Squares F-statistic: 7.890
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00437
Time: 19:31:00 Log-Likelihood: -66.690
No. Observations: 15 AIC: 141.4
Df Residuals: 11 BIC: 144.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 49.9537 52.577 0.950 0.362 -65.768 165.675
C(dose)[T.1] -121.9561 85.356 -1.429 0.181 -309.823 65.911
expression 2.7218 8.065 0.337 0.742 -15.030 20.473
expression:C(dose)[T.1] 24.4052 12.532 1.947 0.077 -3.178 51.988
Omnibus: 1.666 Durbin-Watson: 0.549
Prob(Omnibus): 0.435 Jarque-Bera (JB): 1.263
Skew: -0.654 Prob(JB): 0.532
Kurtosis: 2.445 Cond. No. 122.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.573
Model: OLS Adj. R-squared: 0.502
Method: Least Squares F-statistic: 8.063
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00603
Time: 19:31:00 Log-Likelihood: -68.912
No. Observations: 15 AIC: 143.8
Df Residuals: 12 BIC: 145.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -14.9435 45.151 -0.331 0.746 -113.320 83.433
C(dose)[T.1] 42.3572 14.321 2.958 0.012 11.154 73.560
expression 12.8297 6.854 1.872 0.086 -2.103 27.763
Omnibus: 6.341 Durbin-Watson: 0.715
Prob(Omnibus): 0.042 Jarque-Bera (JB): 1.569
Skew: -0.137 Prob(JB): 0.456
Kurtosis: 1.439 Cond. No. 45.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 19:31:00 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.262
Model: OLS Adj. R-squared: 0.206
Method: Least Squares F-statistic: 4.623
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0509
Time: 19:31:00 Log-Likelihood: -73.018
No. Observations: 15 AIC: 150.0
Df Residuals: 13 BIC: 151.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -27.0272 56.807 -0.476 0.642 -149.750 95.696
expression 18.0013 8.372 2.150 0.051 -0.085 36.088
Omnibus: 2.637 Durbin-Watson: 1.631
Prob(Omnibus): 0.267 Jarque-Bera (JB): 1.149
Skew: -0.221 Prob(JB): 0.563
Kurtosis: 1.718 Cond. No. 45.1