AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.247 | 0.277 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.733 |
Model: | OLS | Adj. R-squared: | 0.691 |
Method: | Least Squares | F-statistic: | 17.42 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 1.11e-05 |
Time: | 23:03:04 | Log-Likelihood: | -97.903 |
No. Observations: | 23 | AIC: | 203.8 |
Df Residuals: | 19 | BIC: | 208.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 57.1470 | 31.903 | 1.791 | 0.089 | -9.627 123.921 |
C(dose)[T.1] | -54.7540 | 53.784 | -1.018 | 0.321 | -167.325 57.817 |
expression | -0.6847 | 7.325 | -0.093 | 0.927 | -16.016 14.647 |
expression:C(dose)[T.1] | 29.6146 | 13.898 | 2.131 | 0.046 | 0.527 58.703 |
Omnibus: | 1.102 | Durbin-Watson: | 2.018 |
Prob(Omnibus): | 0.576 | Jarque-Bera (JB): | 0.994 |
Skew: | 0.450 | Prob(JB): | 0.608 |
Kurtosis: | 2.524 | Cond. No. | 69.2 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.670 |
Model: | OLS | Adj. R-squared: | 0.637 |
Method: | Least Squares | F-statistic: | 20.27 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 1.55e-05 |
Time: | 23:03:04 | Log-Likelihood: | -100.37 |
No. Observations: | 23 | AIC: | 206.7 |
Df Residuals: | 20 | BIC: | 210.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 21.8368 | 29.577 | 0.738 | 0.469 | -39.860 83.533 |
C(dose)[T.1] | 58.2940 | 9.597 | 6.074 | 0.000 | 38.276 78.312 |
expression | 7.5424 | 6.754 | 1.117 | 0.277 | -6.545 21.630 |
Omnibus: | 0.231 | Durbin-Watson: | 2.103 |
Prob(Omnibus): | 0.891 | Jarque-Bera (JB): | 0.316 |
Skew: | 0.204 | Prob(JB): | 0.854 |
Kurtosis: | 2.596 | Cond. No. | 30.3 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 23:03:05 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.060 |
Model: | OLS | Adj. R-squared: | 0.015 |
Method: | Least Squares | F-statistic: | 1.345 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.259 |
Time: | 23:03:05 | Log-Likelihood: | -112.39 |
No. Observations: | 23 | AIC: | 228.8 |
Df Residuals: | 21 | BIC: | 231.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 125.1866 | 39.824 | 3.144 | 0.005 | 42.369 208.004 |
expression | -11.4312 | 9.856 | -1.160 | 0.259 | -31.928 9.066 |
Omnibus: | 2.504 | Durbin-Watson: | 2.237 |
Prob(Omnibus): | 0.286 | Jarque-Bera (JB): | 1.510 |
Skew: | 0.360 | Prob(JB): | 0.470 |
Kurtosis: | 1.972 | Cond. No. | 24.4 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.382 | 0.548 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.470 |
Model: | OLS | Adj. R-squared: | 0.325 |
Method: | Least Squares | F-statistic: | 3.250 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0638 |
Time: | 23:03:05 | Log-Likelihood: | -70.540 |
No. Observations: | 15 | AIC: | 149.1 |
Df Residuals: | 11 | BIC: | 151.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 61.5606 | 125.931 | 0.489 | 0.635 | -215.613 338.734 |
C(dose)[T.1] | 94.4551 | 139.790 | 0.676 | 0.513 | -213.220 402.131 |
expression | 1.5994 | 34.174 | 0.047 | 0.964 | -73.616 76.815 |
expression:C(dose)[T.1] | -10.7772 | 36.894 | -0.292 | 0.776 | -91.980 70.426 |
Omnibus: | 2.383 | Durbin-Watson: | 0.913 |
Prob(Omnibus): | 0.304 | Jarque-Bera (JB): | 1.253 |
Skew: | -0.708 | Prob(JB): | 0.534 |
Kurtosis: | 2.983 | Cond. No. | 119. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.466 |
Model: | OLS | Adj. R-squared: | 0.377 |
Method: | Least Squares | F-statistic: | 5.231 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0232 |
Time: | 23:03:05 | Log-Likelihood: | -70.598 |
No. Observations: | 15 | AIC: | 147.2 |
Df Residuals: | 12 | BIC: | 149.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 95.4852 | 46.804 | 2.040 | 0.064 | -6.492 197.462 |
C(dose)[T.1] | 53.9608 | 17.308 | 3.118 | 0.009 | 16.249 91.672 |
expression | -7.6471 | 12.378 | -0.618 | 0.548 | -34.617 19.323 |
Omnibus: | 2.139 | Durbin-Watson: | 0.890 |
Prob(Omnibus): | 0.343 | Jarque-Bera (JB): | 1.208 |
Skew: | -0.692 | Prob(JB): | 0.547 |
Kurtosis: | 2.867 | Cond. No. | 26.5 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 23:03:05 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.033 |
Model: | OLS | Adj. R-squared: | -0.041 |
Method: | Least Squares | F-statistic: | 0.4443 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.517 |
Time: | 23:03:05 | Log-Likelihood: | -75.048 |
No. Observations: | 15 | AIC: | 154.1 |
Df Residuals: | 13 | BIC: | 155.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 55.4632 | 58.177 | 0.953 | 0.358 | -70.221 181.148 |
expression | 9.5480 | 14.324 | 0.667 | 0.517 | -21.397 40.493 |
Omnibus: | 0.917 | Durbin-Watson: | 1.610 |
Prob(Omnibus): | 0.632 | Jarque-Bera (JB): | 0.686 |
Skew: | 0.053 | Prob(JB): | 0.710 |
Kurtosis: | 1.958 | Cond. No. | 25.0 |