AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.139 0.713 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.753
Model: OLS Adj. R-squared: 0.714
Method: Least Squares F-statistic: 19.31
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.40e-06
Time: 04:17:25 Log-Likelihood: -97.021
No. Observations: 23 AIC: 202.0
Df Residuals: 19 BIC: 206.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -48.3314 67.607 -0.715 0.483 -189.835 93.172
C(dose)[T.1] 350.6765 106.168 3.303 0.004 128.465 572.888
expression 17.4316 11.459 1.521 0.145 -6.552 41.415
expression:C(dose)[T.1] -48.5237 17.357 -2.796 0.012 -84.852 -12.196
Omnibus: 1.846 Durbin-Watson: 2.116
Prob(Omnibus): 0.397 Jarque-Bera (JB): 1.611
Skew: 0.571 Prob(JB): 0.447
Kurtosis: 2.386 Cond. No. 222.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.69
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.64e-05
Time: 04:17:25 Log-Likelihood: -100.98
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 76.0775 58.934 1.291 0.211 -46.857 199.012
C(dose)[T.1] 54.7604 9.536 5.743 0.000 34.869 74.652
expression -3.7177 9.966 -0.373 0.713 -24.506 17.071
Omnibus: 0.458 Durbin-Watson: 1.947
Prob(Omnibus): 0.795 Jarque-Bera (JB): 0.556
Skew: 0.025 Prob(JB): 0.757
Kurtosis: 2.240 Cond. No. 84.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:17:25 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.077
Model: OLS Adj. R-squared: 0.033
Method: Least Squares F-statistic: 1.748
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.200
Time: 04:17:25 Log-Likelihood: -112.19
No. Observations: 23 AIC: 228.4
Df Residuals: 21 BIC: 230.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -36.6115 88.263 -0.415 0.682 -220.165 146.942
expression 19.1788 14.507 1.322 0.200 -10.990 49.347
Omnibus: 2.977 Durbin-Watson: 2.388
Prob(Omnibus): 0.226 Jarque-Bera (JB): 2.320
Skew: 0.648 Prob(JB): 0.313
Kurtosis: 2.139 Cond. No. 79.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.397 0.541 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.559
Model: OLS Adj. R-squared: 0.439
Method: Least Squares F-statistic: 4.649
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0247
Time: 04:17:25 Log-Likelihood: -69.158
No. Observations: 15 AIC: 146.3
Df Residuals: 11 BIC: 149.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -0.7515 152.880 -0.005 0.996 -337.237 335.735
C(dose)[T.1] 432.5802 249.812 1.732 0.111 -117.252 982.412
expression 13.8499 30.979 0.447 0.663 -54.334 82.034
expression:C(dose)[T.1] -74.5119 49.007 -1.520 0.157 -182.376 33.352
Omnibus: 11.331 Durbin-Watson: 0.843
Prob(Omnibus): 0.003 Jarque-Bera (JB): 7.445
Skew: -1.508 Prob(JB): 0.0242
Kurtosis: 4.679 Cond. No. 229.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.466
Model: OLS Adj. R-squared: 0.377
Method: Least Squares F-statistic: 5.245
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0231
Time: 04:17:25 Log-Likelihood: -70.589
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 145.8197 124.972 1.167 0.266 -126.471 418.111
C(dose)[T.1] 53.5479 16.957 3.158 0.008 16.602 90.494
expression -15.9241 25.282 -0.630 0.541 -71.009 39.161
Omnibus: 4.591 Durbin-Watson: 0.939
Prob(Omnibus): 0.101 Jarque-Bera (JB): 2.825
Skew: -1.063 Prob(JB): 0.243
Kurtosis: 3.049 Cond. No. 86.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:17:25 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.023
Model: OLS Adj. R-squared: -0.052
Method: Least Squares F-statistic: 0.3060
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.590
Time: 04:17:25 Log-Likelihood: -75.126
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 9.5094 152.473 0.062 0.951 -319.888 338.906
expression 16.6039 30.017 0.553 0.590 -48.244 81.451
Omnibus: 1.551 Durbin-Watson: 1.490
Prob(Omnibus): 0.460 Jarque-Bera (JB): 0.907
Skew: 0.196 Prob(JB): 0.636
Kurtosis: 1.861 Cond. No. 80.1