AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.295 | 0.593 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.658 |
Model: | OLS | Adj. R-squared: | 0.604 |
Method: | Least Squares | F-statistic: | 12.18 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000113 |
Time: | 03:39:33 | Log-Likelihood: | -100.77 |
No. Observations: | 23 | AIC: | 209.5 |
Df Residuals: | 19 | BIC: | 214.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 58.7538 | 144.137 | 0.408 | 0.688 | -242.928 360.436 |
C(dose)[T.1] | 151.0507 | 205.644 | 0.735 | 0.472 | -279.367 581.469 |
expression | -0.5551 | 17.587 | -0.032 | 0.975 | -37.366 36.255 |
expression:C(dose)[T.1] | -10.8756 | 24.034 | -0.453 | 0.656 | -61.179 39.428 |
Omnibus: | 0.912 | Durbin-Watson: | 1.719 |
Prob(Omnibus): | 0.634 | Jarque-Bera (JB): | 0.801 |
Skew: | 0.181 | Prob(JB): | 0.670 |
Kurtosis: | 2.160 | Cond. No. | 530. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.620 |
Method: | Least Squares | F-statistic: | 18.91 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.45e-05 |
Time: | 03:39:33 | Log-Likelihood: | -100.89 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 106.4397 | 96.364 | 1.105 | 0.282 | -94.573 307.452 |
C(dose)[T.1] | 58.1715 | 12.451 | 4.672 | 0.000 | 32.199 84.144 |
expression | -6.3790 | 11.746 | -0.543 | 0.593 | -30.880 18.122 |
Omnibus: | 0.451 | Durbin-Watson: | 1.682 |
Prob(Omnibus): | 0.798 | Jarque-Bera (JB): | 0.571 |
Skew: | 0.151 | Prob(JB): | 0.751 |
Kurtosis: | 2.290 | Cond. No. | 194. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:39:33 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.277 |
Model: | OLS | Adj. R-squared: | 0.242 |
Method: | Least Squares | F-statistic: | 8.034 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00993 |
Time: | 03:39:33 | Log-Likelihood: | -109.38 |
No. Observations: | 23 | AIC: | 222.8 |
Df Residuals: | 21 | BIC: | 225.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -201.1964 | 99.296 | -2.026 | 0.056 | -407.693 5.300 |
expression | 32.8534 | 11.591 | 2.834 | 0.010 | 8.749 56.957 |
Omnibus: | 3.844 | Durbin-Watson: | 2.615 |
Prob(Omnibus): | 0.146 | Jarque-Bera (JB): | 1.441 |
Skew: | 0.060 | Prob(JB): | 0.487 |
Kurtosis: | 1.780 | Cond. No. | 140. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.938 | 0.189 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.531 |
Model: | OLS | Adj. R-squared: | 0.402 |
Method: | Least Squares | F-statistic: | 4.143 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0342 |
Time: | 03:39:33 | Log-Likelihood: | -69.629 |
No. Observations: | 15 | AIC: | 147.3 |
Df Residuals: | 11 | BIC: | 150.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -217.1455 | 236.251 | -0.919 | 0.378 | -737.131 302.840 |
C(dose)[T.1] | 157.3983 | 351.329 | 0.448 | 0.663 | -615.871 930.668 |
expression | 32.6092 | 27.042 | 1.206 | 0.253 | -26.910 92.129 |
expression:C(dose)[T.1] | -13.4878 | 39.048 | -0.345 | 0.736 | -99.433 72.457 |
Omnibus: | 2.334 | Durbin-Watson: | 0.833 |
Prob(Omnibus): | 0.311 | Jarque-Bera (JB): | 1.795 |
Skew: | -0.754 | Prob(JB): | 0.408 |
Kurtosis: | 2.228 | Cond. No. | 557. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.525 |
Model: | OLS | Adj. R-squared: | 0.446 |
Method: | Least Squares | F-statistic: | 6.643 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0114 |
Time: | 03:39:33 | Log-Likelihood: | -69.710 |
No. Observations: | 15 | AIC: | 145.4 |
Df Residuals: | 12 | BIC: | 147.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -160.6943 | 164.222 | -0.979 | 0.347 | -518.504 197.115 |
C(dose)[T.1] | 36.2040 | 17.332 | 2.089 | 0.059 | -1.559 73.968 |
expression | 26.1405 | 18.778 | 1.392 | 0.189 | -14.774 67.055 |
Omnibus: | 2.492 | Durbin-Watson: | 0.793 |
Prob(Omnibus): | 0.288 | Jarque-Bera (JB): | 1.907 |
Skew: | -0.785 | Prob(JB): | 0.385 |
Kurtosis: | 2.232 | Cond. No. | 206. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:39:33 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.353 |
Model: | OLS | Adj. R-squared: | 0.303 |
Method: | Least Squares | F-statistic: | 7.088 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0195 |
Time: | 03:39:33 | Log-Likelihood: | -72.036 |
No. Observations: | 15 | AIC: | 148.1 |
Df Residuals: | 13 | BIC: | 149.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -331.3167 | 159.837 | -2.073 | 0.059 | -676.624 13.990 |
expression | 47.2631 | 17.752 | 2.662 | 0.020 | 8.911 85.615 |
Omnibus: | 1.373 | Durbin-Watson: | 1.322 |
Prob(Omnibus): | 0.503 | Jarque-Bera (JB): | 0.806 |
Skew: | 0.006 | Prob(JB): | 0.668 |
Kurtosis: | 1.865 | Cond. No. | 178. |