AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.089 0.768 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.685
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 13.76
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.25e-05
Time: 04:15:17 Log-Likelihood: -99.825
No. Observations: 23 AIC: 207.6
Df Residuals: 19 BIC: 212.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 93.0212 63.715 1.460 0.161 -40.335 226.378
C(dose)[T.1] -95.0719 104.042 -0.914 0.372 -312.834 122.691
expression -6.3883 10.442 -0.612 0.548 -28.244 15.467
expression:C(dose)[T.1] 25.1353 17.489 1.437 0.167 -11.470 61.741
Omnibus: 0.024 Durbin-Watson: 1.665
Prob(Omnibus): 0.988 Jarque-Bera (JB): 0.232
Skew: 0.016 Prob(JB): 0.891
Kurtosis: 2.509 Cond. No. 183.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.62
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.71e-05
Time: 04:15:17 Log-Likelihood: -101.01
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 38.5841 52.580 0.734 0.472 -71.097 148.265
C(dose)[T.1] 53.9275 8.970 6.012 0.000 35.216 72.639
expression 2.5716 8.597 0.299 0.768 -15.361 20.504
Omnibus: 0.446 Durbin-Watson: 1.934
Prob(Omnibus): 0.800 Jarque-Bera (JB): 0.551
Skew: 0.038 Prob(JB): 0.759
Kurtosis: 2.245 Cond. No. 74.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:15:17 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.019
Model: OLS Adj. R-squared: -0.027
Method: Least Squares F-statistic: 0.4118
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.528
Time: 04:15:17 Log-Likelihood: -112.88
No. Observations: 23 AIC: 229.8
Df Residuals: 21 BIC: 232.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 132.2117 82.115 1.610 0.122 -38.557 302.980
expression -8.7992 13.712 -0.642 0.528 -37.315 19.717
Omnibus: 2.293 Durbin-Watson: 2.488
Prob(Omnibus): 0.318 Jarque-Bera (JB): 1.527
Skew: 0.401 Prob(JB): 0.466
Kurtosis: 2.026 Cond. No. 70.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.059 0.812 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.459
Model: OLS Adj. R-squared: 0.312
Method: Least Squares F-statistic: 3.113
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0706
Time: 04:15:17 Log-Likelihood: -70.691
No. Observations: 15 AIC: 149.4
Df Residuals: 11 BIC: 152.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 23.9674 97.489 0.246 0.810 -190.605 238.540
C(dose)[T.1] 101.4401 135.193 0.750 0.469 -196.118 398.998
expression 8.5104 18.947 0.449 0.662 -33.192 50.213
expression:C(dose)[T.1] -10.1567 25.747 -0.394 0.701 -66.826 46.513
Omnibus: 2.109 Durbin-Watson: 0.854
Prob(Omnibus): 0.348 Jarque-Bera (JB): 1.604
Skew: -0.739 Prob(JB): 0.449
Kurtosis: 2.382 Cond. No. 123.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 4.939
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0272
Time: 04:15:17 Log-Likelihood: -70.796
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 52.0561 64.202 0.811 0.433 -87.828 191.940
C(dose)[T.1] 48.5108 15.952 3.041 0.010 13.755 83.267
expression 3.0102 12.370 0.243 0.812 -23.941 29.961
Omnibus: 3.382 Durbin-Watson: 0.827
Prob(Omnibus): 0.184 Jarque-Bera (JB): 2.106
Skew: -0.915 Prob(JB): 0.349
Kurtosis: 2.866 Cond. No. 45.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:15:17 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.029
Model: OLS Adj. R-squared: -0.046
Method: Least Squares F-statistic: 0.3847
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.546
Time: 04:15:17 Log-Likelihood: -75.081
No. Observations: 15 AIC: 154.2
Df Residuals: 13 BIC: 155.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 43.1915 81.996 0.527 0.607 -133.950 220.332
expression 9.6542 15.566 0.620 0.546 -23.973 43.282
Omnibus: 1.228 Durbin-Watson: 1.618
Prob(Omnibus): 0.541 Jarque-Bera (JB): 0.770
Skew: -0.018 Prob(JB): 0.681
Kurtosis: 1.891 Cond. No. 44.7