AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.001 0.973 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.605
Method: Least Squares F-statistic: 12.22
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000110
Time: 22:55:12 Log-Likelihood: -100.74
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 20.9989 73.164 0.287 0.777 -132.136 174.134
C(dose)[T.1] 143.3107 123.573 1.160 0.261 -115.330 401.951
expression 4.9516 10.870 0.456 0.654 -17.801 27.704
expression:C(dose)[T.1] -13.5238 18.531 -0.730 0.474 -52.309 25.262
Omnibus: 0.932 Durbin-Watson: 1.807
Prob(Omnibus): 0.628 Jarque-Bera (JB): 0.801
Skew: 0.167 Prob(JB): 0.670
Kurtosis: 2.149 Cond. No. 231.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.50
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.83e-05
Time: 22:55:12 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 52.2108 58.665 0.890 0.384 -70.162 174.584
C(dose)[T.1] 53.3624 8.801 6.063 0.000 35.005 71.720
expression 0.2978 8.700 0.034 0.973 -17.850 18.446
Omnibus: 0.285 Durbin-Watson: 1.882
Prob(Omnibus): 0.867 Jarque-Bera (JB): 0.462
Skew: 0.051 Prob(JB): 0.794
Kurtosis: 2.313 Cond. No. 91.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:55:12 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.043
Method: Least Squares F-statistic: 0.08406
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.775
Time: 22:55:12 Log-Likelihood: -113.06
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 107.2655 95.290 1.126 0.273 -90.900 305.431
expression -4.1325 14.254 -0.290 0.775 -33.774 25.509
Omnibus: 3.112 Durbin-Watson: 2.554
Prob(Omnibus): 0.211 Jarque-Bera (JB): 1.517
Skew: 0.281 Prob(JB): 0.468
Kurtosis: 1.874 Cond. No. 90.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.580 0.461 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.526
Model: OLS Adj. R-squared: 0.397
Method: Least Squares F-statistic: 4.074
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0358
Time: 22:55:12 Log-Likelihood: -69.696
No. Observations: 15 AIC: 147.4
Df Residuals: 11 BIC: 150.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -59.4910 102.253 -0.582 0.572 -284.548 165.566
C(dose)[T.1] 249.3126 180.806 1.379 0.195 -148.638 647.263
expression 18.1838 14.563 1.249 0.238 -13.869 50.236
expression:C(dose)[T.1] -28.9870 26.345 -1.100 0.295 -86.972 28.998
Omnibus: 3.452 Durbin-Watson: 0.883
Prob(Omnibus): 0.178 Jarque-Bera (JB): 2.089
Skew: -0.913 Prob(JB): 0.352
Kurtosis: 2.926 Cond. No. 205.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.474
Model: OLS Adj. R-squared: 0.387
Method: Least Squares F-statistic: 5.411
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0211
Time: 22:55:13 Log-Likelihood: -70.479
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 2.3296 86.179 0.027 0.979 -185.439 190.098
C(dose)[T.1] 51.1027 15.575 3.281 0.007 17.169 85.037
expression 9.3267 12.242 0.762 0.461 -17.346 35.999
Omnibus: 1.590 Durbin-Watson: 0.947
Prob(Omnibus): 0.452 Jarque-Bera (JB): 0.970
Skew: -0.609 Prob(JB): 0.616
Kurtosis: 2.734 Cond. No. 79.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:55:13 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.074
Method: Least Squares F-statistic: 0.03231
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.860
Time: 22:55:13 Log-Likelihood: -75.281
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 73.9200 110.329 0.670 0.515 -164.431 312.271
expression 2.8740 15.990 0.180 0.860 -31.669 37.417
Omnibus: 0.781 Durbin-Watson: 1.667
Prob(Omnibus): 0.677 Jarque-Bera (JB): 0.661
Skew: 0.137 Prob(JB): 0.718
Kurtosis: 2.008 Cond. No. 76.6