AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.677 0.420 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.683
Model: OLS Adj. R-squared: 0.633
Method: Least Squares F-statistic: 13.66
Date: Thu, 03 Apr 2025 Prob (F-statistic): 5.52e-05
Time: 22:54:33 Log-Likelihood: -99.885
No. Observations: 23 AIC: 207.8
Df Residuals: 19 BIC: 212.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 92.5814 30.054 3.081 0.006 29.678 155.484
C(dose)[T.1] -11.5095 54.141 -0.213 0.834 -124.829 101.810
expression -10.3363 7.937 -1.302 0.208 -26.949 6.276
expression:C(dose)[T.1] 18.4761 15.847 1.166 0.258 -14.692 51.644
Omnibus: 1.121 Durbin-Watson: 1.846
Prob(Omnibus): 0.571 Jarque-Bera (JB): 0.827
Skew: -0.070 Prob(JB): 0.661
Kurtosis: 2.082 Cond. No. 56.6

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.627
Method: Least Squares F-statistic: 19.46
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.03e-05
Time: 22:54:33 Log-Likelihood: -100.68
No. Observations: 23 AIC: 207.4
Df Residuals: 20 BIC: 210.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 75.3741 26.414 2.854 0.010 20.275 130.473
C(dose)[T.1] 50.7137 9.196 5.515 0.000 31.531 69.896
expression -5.7013 6.931 -0.823 0.420 -20.160 8.757
Omnibus: 0.066 Durbin-Watson: 1.905
Prob(Omnibus): 0.967 Jarque-Bera (JB): 0.278
Skew: -0.066 Prob(JB): 0.870
Kurtosis: 2.478 Cond. No. 23.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:54:33 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.144
Model: OLS Adj. R-squared: 0.104
Method: Least Squares F-statistic: 3.543
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0737
Time: 22:54:33 Log-Likelihood: -111.31
No. Observations: 23 AIC: 226.6
Df Residuals: 21 BIC: 228.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 145.9277 35.805 4.076 0.001 71.466 220.389
expression -18.9584 10.073 -1.882 0.074 -39.906 1.989
Omnibus: 2.443 Durbin-Watson: 2.620
Prob(Omnibus): 0.295 Jarque-Bera (JB): 1.490
Skew: 0.358 Prob(JB): 0.475
Kurtosis: 1.979 Cond. No. 20.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.053 0.822 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.453
Model: OLS Adj. R-squared: 0.304
Method: Least Squares F-statistic: 3.040
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0746
Time: 22:54:33 Log-Likelihood: -70.772
No. Observations: 15 AIC: 149.5
Df Residuals: 11 BIC: 152.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 32.3597 118.001 0.274 0.789 -227.360 292.079
C(dose)[T.1] 81.3569 160.985 0.505 0.623 -272.968 435.682
expression 12.1550 40.689 0.299 0.771 -77.402 101.712
expression:C(dose)[T.1] -11.1636 55.087 -0.203 0.843 -132.409 110.081
Omnibus: 2.753 Durbin-Watson: 0.865
Prob(Omnibus): 0.252 Jarque-Bera (JB): 1.848
Skew: -0.844 Prob(JB): 0.397
Kurtosis: 2.672 Cond. No. 87.3

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 4.933
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0273
Time: 22:54:33 Log-Likelihood: -70.800
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 49.9324 76.769 0.650 0.528 -117.333 217.198
C(dose)[T.1] 48.9028 15.757 3.104 0.009 14.572 83.233
expression 6.0643 26.310 0.230 0.822 -51.260 63.389
Omnibus: 2.754 Durbin-Watson: 0.861
Prob(Omnibus): 0.252 Jarque-Bera (JB): 1.836
Skew: -0.842 Prob(JB): 0.399
Kurtosis: 2.684 Cond. No. 32.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:54:33 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.011
Model: OLS Adj. R-squared: -0.065
Method: Least Squares F-statistic: 0.1402
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.714
Time: 22:54:34 Log-Likelihood: -75.220
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 56.7936 98.989 0.574 0.576 -157.060 270.647
expression 12.6670 33.828 0.374 0.714 -60.414 85.748
Omnibus: 0.506 Durbin-Watson: 1.648
Prob(Omnibus): 0.777 Jarque-Bera (JB): 0.546
Skew: 0.066 Prob(JB): 0.761
Kurtosis: 2.075 Cond. No. 32.0