AIM Score vs. Gene Expression 
		Full X range:
		
		 
			
		
		Auto X range:
		
		 
		
		
		
		Group Comparisons: Boxplots
		
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  0.754  |   0.396  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.671 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.619 | 
  | Method: |              Least Squares |     F-statistic:        |     12.94 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  7.76e-05 | 
  | Time: |                  07:57:39 |        Log-Likelihood:     |   -100.31 | 
  | No. Observations: |           23 |         AIC:                |     208.6 | 
  | Df Residuals: |               19 |         BIC:                |     213.2 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                   59.4348 |     85.964 |      0.691 |   0.498 |   -120.490   239.360 | 
  | C(dose)[T.1] |               136.9377 |    116.442 |      1.176 |   0.254 |   -106.779   380.654 | 
  | expression |                  -0.7740 |     12.699 |     -0.061 |   0.952 |    -27.353    25.805 | 
  | expression:C(dose)[T.1] |    -13.1455 |     17.657 |     -0.744 |   0.466 |    -50.103    23.812 | 
  | Omnibus: |         0.996 |    Durbin-Watson:      |     1.925 | 
  | Prob(Omnibus): |   0.608 |    Jarque-Bera (JB):   |     0.344 | 
  | Skew: |           -0.293 |    Prob(JB):           |     0.842 | 
  | Kurtosis: |        3.127 |    Cond. No.           |      236. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.662 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.628 | 
  | Method: |              Least Squares |     F-statistic:        |     19.57 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  1.96e-05 | 
  | Time: |                  07:57:39 |        Log-Likelihood:     |   -100.64 | 
  | No. Observations: |           23 |         AIC:                |     207.3 | 
  | Df Residuals: |               20 |         BIC:                |     210.7 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |       105.3496 |     59.214 |      1.779 |   0.090 |    -18.169   228.868 | 
  | C(dose)[T.1] |     50.5256 |      9.198 |      5.493 |   0.000 |     31.338    69.713 | 
  | expression |       -7.5734 |      8.725 |     -0.868 |   0.396 |    -25.772    10.626 | 
  | Omnibus: |         0.413 |    Durbin-Watson:      |     1.840 | 
  | Prob(Omnibus): |   0.813 |    Jarque-Bera (JB):   |     0.042 | 
  | Skew: |           -0.104 |    Prob(JB):           |     0.979 | 
  | Kurtosis: |        3.017 |    Cond. No.           |      93.3 | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.649 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.632 | 
  | Method: |              Least Squares |     F-statistic:        |     38.84 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |  3.51e-06 | 
  | Time: |                  07:57:39 |        Log-Likelihood:     |   -101.06 | 
  | No. Observations: |           23 |         AIC:                |     206.1 | 
  | Df Residuals: |               21 |         BIC:                |     208.4 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        54.2083 |      5.919 |      9.159 |   0.000 |     41.900    66.517 | 
  | C(dose)[T.1] |     53.3371 |      8.558 |      6.232 |   0.000 |     35.539    71.135 | 
  | Omnibus: |         0.322 |    Durbin-Watson:      |     1.888 | 
  | Prob(Omnibus): |   0.851 |    Jarque-Bera (JB):   |     0.485 | 
  | Skew: |            0.060 |    Prob(JB):           |     0.785 | 
  | Kurtosis: |        2.299 |    Cond. No.           |      2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.152 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.111 | 
  | Method: |              Least Squares |     F-statistic:        |     3.752 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0663 |  
  | Time: |                  07:57:39 |        Log-Likelihood:     |   -111.21 | 
  | No. Observations: |           23 |         AIC:                |     226.4 | 
  | Df Residuals: |               21 |         BIC:                |     228.7 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     240.4674 |     83.256 |      2.888 |   0.009 |     67.327   413.608 | 
  | expression |    -24.4481 |     12.622 |     -1.937 |   0.066 |    -50.696     1.800 | 
  | Omnibus: |         2.609 |    Durbin-Watson:      |     2.091 | 
  | Prob(Omnibus): |   0.271 |    Jarque-Bera (JB):   |     1.201 | 
  | Skew: |           -0.011 |    Prob(JB):           |     0.548 | 
  | Kurtosis: |        1.881 |    Cond. No.           |      84.5 | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic |   p-value  |   df difference  |  
		 |  1.758  |   0.210  |   1.0  |  
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.525 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.395 | 
  | Method: |              Least Squares |     F-statistic:        |     4.046 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0365 |  
  | Time: |                  07:57:39 |        Log-Likelihood:     |   -69.724 | 
  | No. Observations: |           15 |         AIC:                |     147.4 | 
  | Df Residuals: |               11 |         BIC:                |     150.3 | 
  | Df Model: |                    3 |                             |        |    
              |                 coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |                  155.4949 |    121.690 |      1.278 |   0.228 |   -112.343   423.333 | 
  | C(dose)[T.1] |               110.4852 |    181.996 |      0.607 |   0.556 |   -290.085   511.055 | 
  | expression |                 -15.1092 |     20.790 |     -0.727 |   0.483 |    -60.868    30.649 | 
  | expression:C(dose)[T.1] |    -11.0841 |     31.499 |     -0.352 |   0.732 |    -80.412    58.244 | 
  | Omnibus: |         6.452 |    Durbin-Watson:      |     1.247 | 
  | Prob(Omnibus): |   0.040 |    Jarque-Bera (JB):   |     3.593 | 
  | Skew: |           -1.145 |    Prob(JB):           |     0.166 | 
  | Kurtosis: |        3.707 |    Cond. No.           |      184. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.519 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.439 | 
  | Method: |              Least Squares |     F-statistic:        |     6.479 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.0124 |  
  | Time: |                  07:57:39 |        Log-Likelihood:     |   -69.808 | 
  | No. Observations: |           15 |         AIC:                |     145.6 | 
  | Df Residuals: |               12 |         BIC:                |     147.7 | 
  | Df Model: |                    2 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |       183.6397 |     88.302 |      2.080 |   0.060 |     -8.754   376.034 | 
  | C(dose)[T.1] |     46.6717 |     14.822 |      3.149 |   0.008 |     14.376    78.967 | 
  | expression |      -19.9379 |     15.037 |     -1.326 |   0.210 |    -52.701    12.826 | 
  | Omnibus: |         5.982 |    Durbin-Watson:      |     1.246 | 
  | Prob(Omnibus): |   0.050 |    Jarque-Bera (JB):   |     3.366 | 
  | Skew: |           -1.128 |    Prob(JB):           |     0.186 | 
  | Kurtosis: |        3.547 |    Cond. No.           |      72.0 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.449 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.406 | 
  | Method: |              Least Squares |     F-statistic:        |     10.58 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |   0.00629 | 
  | Time: |                  07:57:40 |        Log-Likelihood:     |   -70.833 | 
  | No. Observations: |           15 |         AIC:                |     145.7 | 
  | Df Residuals: |               13 |         BIC:                |     147.1 | 
  | Df Model: |                    1 |                             |        |    
         |           coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |        67.4286 |     11.044 |      6.106 |   0.000 |     43.570    91.287 | 
  | C(dose)[T.1] |     49.1964 |     15.122 |      3.253 |   0.006 |     16.527    81.866 | 
  | Omnibus: |         2.713 |    Durbin-Watson:      |     0.810 | 
  | Prob(Omnibus): |   0.258 |    Jarque-Bera (JB):   |     1.868 | 
  | Skew: |           -0.843 |    Prob(JB):           |     0.393 | 
  | Kurtosis: |        2.619 |    Cond. No.           |      2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: |            AIM |          R-squared:          |     0.122 | 
  | Model: |                    OLS |          Adj. R-squared:     |     0.054 | 
  | Method: |              Least Squares |     F-statistic:        |     1.806 | 
  | Date: |              Tue, 04 Nov 2025 |    Prob (F-statistic): |    0.202 |  
  | Time: |                  07:57:40 |        Log-Likelihood:     |   -74.324 | 
  | No. Observations: |           15 |         AIC:                |     152.6 | 
  | Df Residuals: |               13 |         BIC:                |     154.1 | 
  | Df Model: |                    1 |                             |        |    
        |          coef |      std err |       t |       P>|t| |  [95.0% Conf. Int.] |  
  | Intercept |     243.5734 |    111.952 |      2.176 |   0.049 |      1.715   485.431 | 
  | expression |    -26.0205 |     19.362 |     -1.344 |   0.202 |    -67.850    15.809 | 
  | Omnibus: |         0.069 |    Durbin-Watson:      |     2.185 | 
  | Prob(Omnibus): |   0.966 |    Jarque-Bera (JB):   |     0.282 | 
  | Skew: |           -0.092 |    Prob(JB):           |     0.868 | 
  | Kurtosis: |        2.354 |    Cond. No.           |      70.0 |