AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.754 0.396 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.671
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 12.94
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.76e-05
Time: 03:41:07 Log-Likelihood: -100.31
No. Observations: 23 AIC: 208.6
Df Residuals: 19 BIC: 213.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 59.4348 85.964 0.691 0.498 -120.490 239.360
C(dose)[T.1] 136.9377 116.442 1.176 0.254 -106.779 380.654
expression -0.7740 12.699 -0.061 0.952 -27.353 25.805
expression:C(dose)[T.1] -13.1455 17.657 -0.744 0.466 -50.103 23.812
Omnibus: 0.996 Durbin-Watson: 1.925
Prob(Omnibus): 0.608 Jarque-Bera (JB): 0.344
Skew: -0.293 Prob(JB): 0.842
Kurtosis: 3.127 Cond. No. 236.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 19.57
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.96e-05
Time: 03:41:07 Log-Likelihood: -100.64
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 105.3496 59.214 1.779 0.090 -18.169 228.868
C(dose)[T.1] 50.5256 9.198 5.493 0.000 31.338 69.713
expression -7.5734 8.725 -0.868 0.396 -25.772 10.626
Omnibus: 0.413 Durbin-Watson: 1.840
Prob(Omnibus): 0.813 Jarque-Bera (JB): 0.042
Skew: -0.104 Prob(JB): 0.979
Kurtosis: 3.017 Cond. No. 93.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:41:07 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.152
Model: OLS Adj. R-squared: 0.111
Method: Least Squares F-statistic: 3.752
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0663
Time: 03:41:07 Log-Likelihood: -111.21
No. Observations: 23 AIC: 226.4
Df Residuals: 21 BIC: 228.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 240.4674 83.256 2.888 0.009 67.327 413.608
expression -24.4481 12.622 -1.937 0.066 -50.696 1.800
Omnibus: 2.609 Durbin-Watson: 2.091
Prob(Omnibus): 0.271 Jarque-Bera (JB): 1.201
Skew: -0.011 Prob(JB): 0.548
Kurtosis: 1.881 Cond. No. 84.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.758 0.210 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.525
Model: OLS Adj. R-squared: 0.395
Method: Least Squares F-statistic: 4.046
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0365
Time: 03:41:07 Log-Likelihood: -69.724
No. Observations: 15 AIC: 147.4
Df Residuals: 11 BIC: 150.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 155.4949 121.690 1.278 0.228 -112.343 423.333
C(dose)[T.1] 110.4852 181.996 0.607 0.556 -290.085 511.055
expression -15.1092 20.790 -0.727 0.483 -60.868 30.649
expression:C(dose)[T.1] -11.0841 31.499 -0.352 0.732 -80.412 58.244
Omnibus: 6.452 Durbin-Watson: 1.247
Prob(Omnibus): 0.040 Jarque-Bera (JB): 3.593
Skew: -1.145 Prob(JB): 0.166
Kurtosis: 3.707 Cond. No. 184.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.519
Model: OLS Adj. R-squared: 0.439
Method: Least Squares F-statistic: 6.479
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0124
Time: 03:41:07 Log-Likelihood: -69.808
No. Observations: 15 AIC: 145.6
Df Residuals: 12 BIC: 147.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 183.6397 88.302 2.080 0.060 -8.754 376.034
C(dose)[T.1] 46.6717 14.822 3.149 0.008 14.376 78.967
expression -19.9379 15.037 -1.326 0.210 -52.701 12.826
Omnibus: 5.982 Durbin-Watson: 1.246
Prob(Omnibus): 0.050 Jarque-Bera (JB): 3.366
Skew: -1.128 Prob(JB): 0.186
Kurtosis: 3.547 Cond. No. 72.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:41:07 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.122
Model: OLS Adj. R-squared: 0.054
Method: Least Squares F-statistic: 1.806
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.202
Time: 03:41:07 Log-Likelihood: -74.324
No. Observations: 15 AIC: 152.6
Df Residuals: 13 BIC: 154.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 243.5734 111.952 2.176 0.049 1.715 485.431
expression -26.0205 19.362 -1.344 0.202 -67.850 15.809
Omnibus: 0.069 Durbin-Watson: 2.185
Prob(Omnibus): 0.966 Jarque-Bera (JB): 0.282
Skew: -0.092 Prob(JB): 0.868
Kurtosis: 2.354 Cond. No. 70.0