AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.108 0.746 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.608
Method: Least Squares F-statistic: 12.36
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000103
Time: 04:02:17 Log-Likelihood: -100.66
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 64.6240 38.704 1.670 0.111 -16.385 145.633
C(dose)[T.1] 8.9222 58.791 0.152 0.881 -114.130 131.974
expression -1.9436 7.132 -0.273 0.788 -16.870 12.983
expression:C(dose)[T.1] 7.9702 10.541 0.756 0.459 -14.092 30.033
Omnibus: 0.100 Durbin-Watson: 1.980
Prob(Omnibus): 0.951 Jarque-Bera (JB): 0.307
Skew: -0.093 Prob(JB): 0.858
Kurtosis: 2.465 Cond. No. 97.2

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.65
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.69e-05
Time: 04:02:17 Log-Likelihood: -101.00
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 45.0731 28.490 1.582 0.129 -14.356 104.502
C(dose)[T.1] 52.8554 8.869 5.960 0.000 34.356 71.355
expression 1.7047 5.195 0.328 0.746 -9.132 12.541
Omnibus: 0.241 Durbin-Watson: 1.912
Prob(Omnibus): 0.886 Jarque-Bera (JB): 0.434
Skew: 0.083 Prob(JB): 0.805
Kurtosis: 2.347 Cond. No. 37.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:02:17 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.031
Model: OLS Adj. R-squared: -0.015
Method: Least Squares F-statistic: 0.6721
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.422
Time: 04:02:17 Log-Likelihood: -112.74
No. Observations: 23 AIC: 229.5
Df Residuals: 21 BIC: 231.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 42.1959 46.317 0.911 0.373 -54.125 138.517
expression 6.8294 8.331 0.820 0.422 -10.495 24.154
Omnibus: 4.254 Durbin-Watson: 2.559
Prob(Omnibus): 0.119 Jarque-Bera (JB): 1.622
Skew: 0.206 Prob(JB): 0.444
Kurtosis: 1.766 Cond. No. 37.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.122 0.310 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.500
Model: OLS Adj. R-squared: 0.364
Method: Least Squares F-statistic: 3.665
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0473
Time: 04:02:17 Log-Likelihood: -70.103
No. Observations: 15 AIC: 148.2
Df Residuals: 11 BIC: 151.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 128.0864 63.927 2.004 0.070 -12.615 268.788
C(dose)[T.1] 16.1536 90.077 0.179 0.861 -182.105 214.412
expression -15.6658 16.244 -0.964 0.356 -51.418 20.086
expression:C(dose)[T.1] 7.3669 24.844 0.297 0.772 -47.315 62.049
Omnibus: 2.663 Durbin-Watson: 0.950
Prob(Omnibus): 0.264 Jarque-Bera (JB): 1.950
Skew: -0.843 Prob(JB): 0.377
Kurtosis: 2.472 Cond. No. 58.1

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.496
Model: OLS Adj. R-squared: 0.412
Method: Least Squares F-statistic: 5.903
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0164
Time: 04:02:17 Log-Likelihood: -70.162
No. Observations: 15 AIC: 146.3
Df Residuals: 12 BIC: 148.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 115.8928 47.048 2.463 0.030 13.385 218.401
C(dose)[T.1] 42.3818 16.368 2.589 0.024 6.718 78.045
expression -12.5166 11.814 -1.059 0.310 -38.258 13.225
Omnibus: 2.437 Durbin-Watson: 0.841
Prob(Omnibus): 0.296 Jarque-Bera (JB): 1.833
Skew: -0.800 Prob(JB): 0.400
Kurtosis: 2.390 Cond. No. 25.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:02:17 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.214
Model: OLS Adj. R-squared: 0.154
Method: Least Squares F-statistic: 3.546
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0823
Time: 04:02:17 Log-Likelihood: -73.491
No. Observations: 15 AIC: 151.0
Df Residuals: 13 BIC: 152.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 181.5527 47.534 3.819 0.002 78.861 284.244
expression -24.5380 13.031 -1.883 0.082 -52.690 3.614
Omnibus: 0.866 Durbin-Watson: 1.687
Prob(Omnibus): 0.649 Jarque-Bera (JB): 0.767
Skew: 0.305 Prob(JB): 0.682
Kurtosis: 2.075 Cond. No. 20.6