AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.385 0.542 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.609
Method: Least Squares F-statistic: 12.41
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000100
Time: 05:08:02 Log-Likelihood: -100.62
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 48.6847 49.115 0.991 0.334 -54.114 151.484
C(dose)[T.1] 5.7392 79.640 0.072 0.943 -160.949 172.427
expression 0.9687 8.547 0.113 0.911 -16.920 18.858
expression:C(dose)[T.1] 8.4484 13.974 0.605 0.553 -20.800 37.697
Omnibus: 0.429 Durbin-Watson: 1.860
Prob(Omnibus): 0.807 Jarque-Bera (JB): 0.563
Skew: 0.212 Prob(JB): 0.755
Kurtosis: 2.361 Cond. No. 130.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.04
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.34e-05
Time: 05:08:02 Log-Likelihood: -100.84
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 30.6649 38.413 0.798 0.434 -49.462 110.792
C(dose)[T.1] 53.5889 8.696 6.162 0.000 35.449 71.729
expression 4.1290 6.654 0.621 0.542 -9.751 18.009
Omnibus: 0.383 Durbin-Watson: 1.951
Prob(Omnibus): 0.826 Jarque-Bera (JB): 0.524
Skew: 0.095 Prob(JB): 0.770
Kurtosis: 2.286 Cond. No. 52.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:08:02 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.046
Method: Least Squares F-statistic: 0.04025
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.843
Time: 05:08:02 Log-Likelihood: -113.08
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.1481 63.061 1.065 0.299 -63.995 198.292
expression 2.2157 11.044 0.201 0.843 -20.751 25.182
Omnibus: 3.054 Durbin-Watson: 2.522
Prob(Omnibus): 0.217 Jarque-Bera (JB): 1.506
Skew: 0.281 Prob(JB): 0.471
Kurtosis: 1.880 Cond. No. 51.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.226 0.098 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.588
Model: OLS Adj. R-squared: 0.476
Method: Least Squares F-statistic: 5.232
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0174
Time: 05:08:02 Log-Likelihood: -68.650
No. Observations: 15 AIC: 145.3
Df Residuals: 11 BIC: 148.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 17.2889 98.234 0.176 0.863 -198.922 233.500
C(dose)[T.1] -52.8453 128.269 -0.412 0.688 -335.163 229.472
expression 7.9101 15.411 0.513 0.618 -26.009 41.829
expression:C(dose)[T.1] 15.3511 19.855 0.773 0.456 -28.350 59.052
Omnibus: 2.167 Durbin-Watson: 0.547
Prob(Omnibus): 0.338 Jarque-Bera (JB): 1.652
Skew: -0.748 Prob(JB): 0.438
Kurtosis: 2.365 Cond. No. 167.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.566
Model: OLS Adj. R-squared: 0.493
Method: Least Squares F-statistic: 7.811
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00672
Time: 05:08:02 Log-Likelihood: -69.047
No. Observations: 15 AIC: 144.1
Df Residuals: 12 BIC: 146.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -41.3298 61.407 -0.673 0.514 -175.124 92.464
C(dose)[T.1] 45.7036 14.108 3.240 0.007 14.965 76.442
expression 17.1578 9.553 1.796 0.098 -3.656 37.972
Omnibus: 2.798 Durbin-Watson: 0.586
Prob(Omnibus): 0.247 Jarque-Bera (JB): 1.887
Skew: -0.691 Prob(JB): 0.389
Kurtosis: 1.947 Cond. No. 58.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:08:02 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.186
Model: OLS Adj. R-squared: 0.123
Method: Least Squares F-statistic: 2.963
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.109
Time: 05:08:02 Log-Likelihood: -73.760
No. Observations: 15 AIC: 151.5
Df Residuals: 13 BIC: 152.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -44.4584 80.767 -0.550 0.591 -218.945 130.028
expression 21.4237 12.446 1.721 0.109 -5.465 48.312
Omnibus: 0.184 Durbin-Watson: 1.943
Prob(Omnibus): 0.912 Jarque-Bera (JB): 0.384
Skew: -0.100 Prob(JB): 0.825
Kurtosis: 2.242 Cond. No. 58.5