AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.014 0.907 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.690
Model: OLS Adj. R-squared: 0.641
Method: Least Squares F-statistic: 14.11
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.49e-05
Time: 04:47:14 Log-Likelihood: -99.630
No. Observations: 23 AIC: 207.3
Df Residuals: 19 BIC: 211.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 113.1013 54.867 2.061 0.053 -1.737 227.939
C(dose)[T.1] -84.6144 87.496 -0.967 0.346 -267.746 98.517
expression -10.3923 9.627 -1.080 0.294 -30.541 9.757
expression:C(dose)[T.1] 24.5467 15.504 1.583 0.130 -7.904 56.997
Omnibus: 1.657 Durbin-Watson: 1.666
Prob(Omnibus): 0.437 Jarque-Bera (JB): 0.979
Skew: 0.037 Prob(JB): 0.613
Kurtosis: 1.992 Cond. No. 149.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.51
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.81e-05
Time: 04:47:14 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 59.4706 44.758 1.329 0.199 -33.893 152.834
C(dose)[T.1] 53.2614 8.790 6.059 0.000 34.926 71.597
expression -0.9286 7.825 -0.119 0.907 -17.252 15.395
Omnibus: 0.259 Durbin-Watson: 1.885
Prob(Omnibus): 0.878 Jarque-Bera (JB): 0.446
Skew: 0.025 Prob(JB): 0.800
Kurtosis: 2.320 Cond. No. 59.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:47:14 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.042
Method: Least Squares F-statistic: 0.1160
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.737
Time: 04:47:14 Log-Likelihood: -113.04
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 104.3080 72.543 1.438 0.165 -46.554 255.170
expression -4.3693 12.826 -0.341 0.737 -31.043 22.304
Omnibus: 3.398 Durbin-Watson: 2.469
Prob(Omnibus): 0.183 Jarque-Bera (JB): 1.642
Skew: 0.321 Prob(JB): 0.440
Kurtosis: 1.859 Cond. No. 58.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.778 0.395 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.513
Model: OLS Adj. R-squared: 0.380
Method: Least Squares F-statistic: 3.859
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0414
Time: 04:47:14 Log-Likelihood: -69.907
No. Observations: 15 AIC: 147.8
Df Residuals: 11 BIC: 150.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -147.7573 179.578 -0.823 0.428 -543.006 247.492
C(dose)[T.1] 253.8139 256.116 0.991 0.343 -309.895 817.522
expression 32.9890 27.476 1.201 0.255 -27.485 93.463
expression:C(dose)[T.1] -31.4703 37.964 -0.829 0.425 -115.028 52.088
Omnibus: 2.441 Durbin-Watson: 1.244
Prob(Omnibus): 0.295 Jarque-Bera (JB): 1.521
Skew: -0.772 Prob(JB): 0.467
Kurtosis: 2.771 Cond. No. 309.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.482
Model: OLS Adj. R-squared: 0.396
Method: Least Squares F-statistic: 5.591
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0192
Time: 04:47:14 Log-Likelihood: -70.362
No. Observations: 15 AIC: 146.7
Df Residuals: 12 BIC: 148.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -40.2341 122.563 -0.328 0.748 -307.275 226.807
C(dose)[T.1] 42.0033 17.296 2.428 0.032 4.318 79.688
expression 16.5052 18.712 0.882 0.395 -24.264 57.275
Omnibus: 1.732 Durbin-Watson: 0.929
Prob(Omnibus): 0.421 Jarque-Bera (JB): 1.354
Skew: -0.661 Prob(JB): 0.508
Kurtosis: 2.355 Cond. No. 112.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:47:14 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.228
Model: OLS Adj. R-squared: 0.169
Method: Least Squares F-statistic: 3.838
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0719
Time: 04:47:14 Log-Likelihood: -73.360
No. Observations: 15 AIC: 150.7
Df Residuals: 13 BIC: 152.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -162.5651 131.101 -1.240 0.237 -445.791 120.661
expression 37.9300 19.362 1.959 0.072 -3.899 79.759
Omnibus: 1.493 Durbin-Watson: 1.624
Prob(Omnibus): 0.474 Jarque-Bera (JB): 1.213
Skew: 0.563 Prob(JB): 0.545
Kurtosis: 2.181 Cond. No. 102.