AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.004 | 0.950 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.750 |
Model: | OLS | Adj. R-squared: | 0.711 |
Method: | Least Squares | F-statistic: | 19.02 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.02e-06 |
Time: | 04:43:20 | Log-Likelihood: | -97.153 |
No. Observations: | 23 | AIC: | 202.3 |
Df Residuals: | 19 | BIC: | 206.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -49.0695 | 66.049 | -0.743 | 0.467 | -187.313 89.174 |
C(dose)[T.1] | 349.8314 | 107.370 | 3.258 | 0.004 | 125.104 574.559 |
expression | 15.3784 | 9.804 | 1.569 | 0.133 | -5.141 35.898 |
expression:C(dose)[T.1] | -46.2847 | 16.694 | -2.773 | 0.012 | -81.226 -11.344 |
Omnibus: | 0.459 | Durbin-Watson: | 1.541 |
Prob(Omnibus): | 0.795 | Jarque-Bera (JB): | 0.358 |
Skew: | 0.275 | Prob(JB): | 0.836 |
Kurtosis: | 2.732 | Cond. No. | 229. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 04:43:20 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 58.1327 | 61.856 | 0.940 | 0.359 | -70.897 187.163 |
C(dose)[T.1] | 53.0659 | 9.746 | 5.445 | 0.000 | 32.735 73.396 |
expression | -0.5843 | 9.166 | -0.064 | 0.950 | -19.705 18.536 |
Omnibus: | 0.355 | Durbin-Watson: | 1.890 |
Prob(Omnibus): | 0.838 | Jarque-Bera (JB): | 0.505 |
Skew: | 0.075 | Prob(JB): | 0.777 |
Kurtosis: | 2.290 | Cond. No. | 94.6 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:43:20 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.129 |
Model: | OLS | Adj. R-squared: | 0.088 |
Method: | Least Squares | F-statistic: | 3.112 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0923 |
Time: | 04:43:20 | Log-Likelihood: | -111.52 |
No. Observations: | 23 | AIC: | 227.0 |
Df Residuals: | 21 | BIC: | 229.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 224.9676 | 82.618 | 2.723 | 0.013 | 53.155 396.780 |
expression | -22.3675 | 12.680 | -1.764 | 0.092 | -48.737 4.002 |
Omnibus: | 2.466 | Durbin-Watson: | 2.436 |
Prob(Omnibus): | 0.291 | Jarque-Bera (JB): | 1.177 |
Skew: | -0.049 | Prob(JB): | 0.555 |
Kurtosis: | 1.896 | Cond. No. | 81.8 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.015 | 0.108 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.560 |
Model: | OLS | Adj. R-squared: | 0.440 |
Method: | Least Squares | F-statistic: | 4.674 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0243 |
Time: | 04:43:20 | Log-Likelihood: | -69.136 |
No. Observations: | 15 | AIC: | 146.3 |
Df Residuals: | 11 | BIC: | 149.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 212.5655 | 104.935 | 2.026 | 0.068 | -18.394 443.525 |
C(dose)[T.1] | 83.1189 | 220.011 | 0.378 | 0.713 | -401.122 567.360 |
expression | -19.6533 | 14.135 | -1.390 | 0.192 | -50.764 11.458 |
expression:C(dose)[T.1] | -4.5055 | 29.642 | -0.152 | 0.882 | -69.748 60.737 |
Omnibus: | 4.174 | Durbin-Watson: | 0.770 |
Prob(Omnibus): | 0.124 | Jarque-Bera (JB): | 2.304 |
Skew: | -0.954 | Prob(JB): | 0.316 |
Kurtosis: | 3.211 | Cond. No. | 272. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.559 |
Model: | OLS | Adj. R-squared: | 0.486 |
Method: | Least Squares | F-statistic: | 7.620 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00731 |
Time: | 04:43:20 | Log-Likelihood: | -69.152 |
No. Observations: | 15 | AIC: | 144.3 |
Df Residuals: | 12 | BIC: | 146.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 220.1313 | 88.537 | 2.486 | 0.029 | 27.225 413.038 |
C(dose)[T.1] | 49.7524 | 14.074 | 3.535 | 0.004 | 19.087 80.418 |
expression | -20.6778 | 11.908 | -1.736 | 0.108 | -46.623 5.268 |
Omnibus: | 4.019 | Durbin-Watson: | 0.790 |
Prob(Omnibus): | 0.134 | Jarque-Bera (JB): | 2.238 |
Skew: | -0.943 | Prob(JB): | 0.327 |
Kurtosis: | 3.166 | Cond. No. | 95.5 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:43:20 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.101 |
Model: | OLS | Adj. R-squared: | 0.032 |
Method: | Least Squares | F-statistic: | 1.456 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.249 |
Time: | 04:43:20 | Log-Likelihood: | -74.504 |
No. Observations: | 15 | AIC: | 153.0 |
Df Residuals: | 13 | BIC: | 154.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 239.5801 | 121.300 | 1.975 | 0.070 | -22.473 501.633 |
expression | -19.7201 | 16.342 | -1.207 | 0.249 | -55.025 15.584 |
Omnibus: | 3.559 | Durbin-Watson: | 1.873 |
Prob(Omnibus): | 0.169 | Jarque-Bera (JB): | 1.332 |
Skew: | 0.257 | Prob(JB): | 0.514 |
Kurtosis: | 1.634 | Cond. No. | 95.1 |