AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.439 0.515 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.607
Method: Least Squares F-statistic: 12.34
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000104
Time: 04:58:03 Log-Likelihood: -100.67
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -46.4006 126.678 -0.366 0.718 -311.540 218.739
C(dose)[T.1] 134.2450 168.038 0.799 0.434 -217.462 485.953
expression 14.3904 18.098 0.795 0.436 -23.489 52.270
expression:C(dose)[T.1] -11.6531 23.708 -0.492 0.629 -61.275 37.968
Omnibus: 0.658 Durbin-Watson: 2.090
Prob(Omnibus): 0.720 Jarque-Bera (JB): 0.661
Skew: -0.102 Prob(JB): 0.718
Kurtosis: 2.195 Cond. No. 371.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.12
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.28e-05
Time: 04:58:03 Log-Likelihood: -100.81
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 1.0755 80.393 0.013 0.989 -166.621 168.772
C(dose)[T.1] 51.7730 8.990 5.759 0.000 33.019 70.527
expression 7.5998 11.467 0.663 0.515 -16.320 31.519
Omnibus: 0.278 Durbin-Watson: 2.014
Prob(Omnibus): 0.870 Jarque-Bera (JB): 0.457
Skew: -0.146 Prob(JB): 0.796
Kurtosis: 2.374 Cond. No. 135.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:58:03 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.087
Model: OLS Adj. R-squared: 0.044
Method: Least Squares F-statistic: 2.006
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.171
Time: 04:58:03 Log-Likelihood: -112.06
No. Observations: 23 AIC: 228.1
Df Residuals: 21 BIC: 230.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -97.0588 125.006 -0.776 0.446 -357.022 162.905
expression 24.9338 17.605 1.416 0.171 -11.678 61.545
Omnibus: 4.575 Durbin-Watson: 2.686
Prob(Omnibus): 0.102 Jarque-Bera (JB): 1.691
Skew: 0.221 Prob(JB): 0.429
Kurtosis: 1.747 Cond. No. 131.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.241 0.633 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.483
Model: OLS Adj. R-squared: 0.342
Method: Least Squares F-statistic: 3.423
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0562
Time: 04:58:03 Log-Likelihood: -70.354
No. Observations: 15 AIC: 148.7
Df Residuals: 11 BIC: 151.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 25.8427 277.180 0.093 0.927 -584.226 635.911
C(dose)[T.1] 325.2510 394.008 0.825 0.427 -541.955 1192.457
expression 6.5312 43.494 0.150 0.883 -89.197 102.260
expression:C(dose)[T.1] -43.6419 62.073 -0.703 0.497 -180.264 92.980
Omnibus: 2.710 Durbin-Watson: 0.759
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.929
Skew: -0.849 Prob(JB): 0.381
Kurtosis: 2.546 Cond. No. 427.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.460
Model: OLS Adj. R-squared: 0.370
Method: Least Squares F-statistic: 5.103
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0249
Time: 04:58:03 Log-Likelihood: -70.684
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 162.2691 193.713 0.838 0.419 -259.796 584.334
C(dose)[T.1] 48.4636 15.656 3.096 0.009 14.353 82.574
expression -14.8950 30.371 -0.490 0.633 -81.067 51.277
Omnibus: 2.609 Durbin-Watson: 0.846
Prob(Omnibus): 0.271 Jarque-Bera (JB): 1.895
Skew: -0.833 Prob(JB): 0.388
Kurtosis: 2.494 Cond. No. 163.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:58:04 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.028
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.3754
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.551
Time: 04:58:04 Log-Likelihood: -75.087
No. Observations: 15 AIC: 154.2
Df Residuals: 13 BIC: 155.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 245.0144 247.210 0.991 0.340 -289.050 779.079
expression -23.8679 38.954 -0.613 0.551 -108.022 60.286
Omnibus: 0.826 Durbin-Watson: 1.714
Prob(Omnibus): 0.662 Jarque-Bera (JB): 0.656
Skew: -0.033 Prob(JB): 0.720
Kurtosis: 1.978 Cond. No. 160.