AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.966 | 0.338 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.668 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 12.76 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 8.47e-05 |
Time: | 22:57:34 | Log-Likelihood: | -100.42 |
No. Observations: | 23 | AIC: | 208.8 |
Df Residuals: | 19 | BIC: | 213.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 123.0461 | 161.678 | 0.761 | 0.456 | -215.350 461.443 |
C(dose)[T.1] | 165.8560 | 248.956 | 0.666 | 0.513 | -355.214 686.926 |
expression | -8.6244 | 20.242 | -0.426 | 0.675 | -50.991 33.742 |
expression:C(dose)[T.1] | -12.5018 | 29.925 | -0.418 | 0.681 | -75.136 50.133 |
Omnibus: | 0.260 | Durbin-Watson: | 1.815 |
Prob(Omnibus): | 0.878 | Jarque-Bera (JB): | 0.447 |
Skew: | 0.040 | Prob(JB): | 0.800 |
Kurtosis: | 2.322 | Cond. No. | 609. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.665 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 19.87 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 1.77e-05 |
Time: | 22:57:34 | Log-Likelihood: | -100.52 |
No. Observations: | 23 | AIC: | 207.0 |
Df Residuals: | 20 | BIC: | 210.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 168.7016 | 116.665 | 1.446 | 0.164 | -74.658 412.061 |
C(dose)[T.1] | 61.9828 | 12.279 | 5.048 | 0.000 | 36.369 87.597 |
expression | -14.3444 | 14.598 | -0.983 | 0.338 | -44.795 16.106 |
Omnibus: | 0.456 | Durbin-Watson: | 1.937 |
Prob(Omnibus): | 0.796 | Jarque-Bera (JB): | 0.554 |
Skew: | -0.006 | Prob(JB): | 0.758 |
Kurtosis: | 2.240 | Cond. No. | 230. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:57:34 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.239 |
Model: | OLS | Adj. R-squared: | 0.202 |
Method: | Least Squares | F-statistic: | 6.585 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0180 |
Time: | 22:57:34 | Log-Likelihood: | -109.97 |
No. Observations: | 23 | AIC: | 223.9 |
Df Residuals: | 21 | BIC: | 226.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -238.2912 | 124.089 | -1.920 | 0.069 | -496.348 19.766 |
expression | 38.4533 | 14.985 | 2.566 | 0.018 | 7.290 69.617 |
Omnibus: | 1.347 | Durbin-Watson: | 2.246 |
Prob(Omnibus): | 0.510 | Jarque-Bera (JB): | 1.193 |
Skew: | 0.413 | Prob(JB): | 0.551 |
Kurtosis: | 2.250 | Cond. No. | 166. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.109 | 0.747 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.535 |
Model: | OLS | Adj. R-squared: | 0.408 |
Method: | Least Squares | F-statistic: | 4.213 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0327 |
Time: | 22:57:34 | Log-Likelihood: | -69.563 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 11 | BIC: | 150.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 159.8387 | 186.132 | 0.859 | 0.409 | -249.834 569.512 |
C(dose)[T.1] | -399.6384 | 325.612 | -1.227 | 0.245 | -1116.306 317.029 |
expression | -10.2287 | 20.566 | -0.497 | 0.629 | -55.495 35.037 |
expression:C(dose)[T.1] | 50.4016 | 36.447 | 1.383 | 0.194 | -29.818 130.621 |
Omnibus: | 1.772 | Durbin-Watson: | 1.247 |
Prob(Omnibus): | 0.412 | Jarque-Bera (JB): | 1.287 |
Skew: | -0.676 | Prob(JB): | 0.525 |
Kurtosis: | 2.516 | Cond. No. | 482. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.454 |
Model: | OLS | Adj. R-squared: | 0.363 |
Method: | Least Squares | F-statistic: | 4.984 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0266 |
Time: | 22:57:34 | Log-Likelihood: | -70.765 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 14.8511 | 159.533 | 0.093 | 0.927 | -332.741 362.443 |
C(dose)[T.1] | 50.1402 | 15.927 | 3.148 | 0.008 | 15.439 84.841 |
expression | 5.8197 | 17.613 | 0.330 | 0.747 | -32.555 44.195 |
Omnibus: | 2.174 | Durbin-Watson: | 0.913 |
Prob(Omnibus): | 0.337 | Jarque-Bera (JB): | 1.557 |
Skew: | -0.753 | Prob(JB): | 0.459 |
Kurtosis: | 2.530 | Cond. No. | 185. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:57:34 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.003 |
Model: | OLS | Adj. R-squared: | -0.074 |
Method: | Least Squares | F-statistic: | 0.03361 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.857 |
Time: | 22:57:35 | Log-Likelihood: | -75.281 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 130.5660 | 201.542 | 0.648 | 0.528 | -304.839 565.971 |
expression | -4.1238 | 22.495 | -0.183 | 0.857 | -52.722 44.474 |
Omnibus: | 0.658 | Durbin-Watson: | 1.602 |
Prob(Omnibus): | 0.720 | Jarque-Bera (JB): | 0.602 |
Skew: | 0.057 | Prob(JB): | 0.740 |
Kurtosis: | 2.025 | Cond. No. | 180. |