AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.794 0.383 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.689
Model: OLS Adj. R-squared: 0.640
Method: Least Squares F-statistic: 14.02
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.67e-05
Time: 04:55:28 Log-Likelihood: -99.680
No. Observations: 23 AIC: 207.4
Df Residuals: 19 BIC: 211.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 14.4335 125.519 0.115 0.910 -248.281 277.148
C(dose)[T.1] -335.5237 307.817 -1.090 0.289 -979.793 308.745
expression 4.5045 14.200 0.317 0.755 -25.216 34.225
expression:C(dose)[T.1] 44.7322 35.263 1.269 0.220 -29.074 118.538
Omnibus: 0.181 Durbin-Watson: 2.024
Prob(Omnibus): 0.913 Jarque-Bera (JB): 0.016
Skew: 0.028 Prob(JB): 0.992
Kurtosis: 2.883 Cond. No. 742.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.629
Method: Least Squares F-statistic: 19.63
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.92e-05
Time: 04:55:28 Log-Likelihood: -100.61
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -49.6131 116.654 -0.425 0.675 -292.949 193.723
C(dose)[T.1] 54.7995 8.756 6.259 0.000 36.535 73.064
expression 11.7578 13.194 0.891 0.383 -15.764 39.280
Omnibus: 0.005 Durbin-Watson: 2.053
Prob(Omnibus): 0.998 Jarque-Bera (JB): 0.132
Skew: -0.019 Prob(JB): 0.936
Kurtosis: 2.630 Cond. No. 242.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:55:28 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.046
Method: Least Squares F-statistic: 0.02922
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.866
Time: 04:55:28 Log-Likelihood: -113.09
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 112.3307 190.935 0.588 0.563 -284.740 509.401
expression -3.7185 21.755 -0.171 0.866 -48.960 41.523
Omnibus: 3.291 Durbin-Watson: 2.476
Prob(Omnibus): 0.193 Jarque-Bera (JB): 1.582
Skew: 0.298 Prob(JB): 0.453
Kurtosis: 1.862 Cond. No. 235.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.372 0.553 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.495
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 3.590
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0499
Time: 04:55:28 Log-Likelihood: -70.180
No. Observations: 15 AIC: 148.4
Df Residuals: 11 BIC: 151.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 365.5109 300.305 1.217 0.249 -295.456 1026.478
C(dose)[T.1] -282.6622 417.839 -0.676 0.513 -1202.321 636.996
expression -33.3779 33.602 -0.993 0.342 -107.336 40.580
expression:C(dose)[T.1] 37.0985 46.389 0.800 0.441 -65.003 139.200
Omnibus: 3.389 Durbin-Watson: 1.179
Prob(Omnibus): 0.184 Jarque-Bera (JB): 2.077
Skew: -0.910 Prob(JB): 0.354
Kurtosis: 2.896 Cond. No. 653.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.465
Model: OLS Adj. R-squared: 0.376
Method: Least Squares F-statistic: 5.222
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0234
Time: 04:55:28 Log-Likelihood: -70.604
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 191.6748 204.070 0.939 0.366 -252.954 636.304
C(dose)[T.1] 51.2480 15.862 3.231 0.007 16.687 85.809
expression -13.9125 22.816 -0.610 0.553 -63.623 35.798
Omnibus: 2.449 Durbin-Watson: 0.911
Prob(Omnibus): 0.294 Jarque-Bera (JB): 1.793
Skew: -0.805 Prob(JB): 0.408
Kurtosis: 2.474 Cond. No. 241.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:55:28 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.077
Method: Least Squares F-statistic: 0.003458
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.954
Time: 04:55:28 Log-Likelihood: -75.298
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 78.1473 264.098 0.296 0.772 -492.401 648.696
expression 1.7226 29.293 0.059 0.954 -61.560 65.005
Omnibus: 0.573 Durbin-Watson: 1.612
Prob(Omnibus): 0.751 Jarque-Bera (JB): 0.569
Skew: 0.029 Prob(JB): 0.753
Kurtosis: 2.048 Cond. No. 237.