AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
7.027 0.015 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.788
Model: OLS Adj. R-squared: 0.755
Method: Least Squares F-statistic: 23.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.28e-06
Time: 22:56:42 Log-Likelihood: -95.252
No. Observations: 23 AIC: 198.5
Df Residuals: 19 BIC: 203.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 238.8855 148.218 1.612 0.124 -71.339 549.110
C(dose)[T.1] 627.2624 273.159 2.296 0.033 55.534 1198.991
expression -19.1557 15.366 -1.247 0.228 -51.317 13.005
expression:C(dose)[T.1] -57.8994 27.911 -2.074 0.052 -116.318 0.519
Omnibus: 0.547 Durbin-Watson: 1.976
Prob(Omnibus): 0.761 Jarque-Bera (JB): 0.585
Skew: 0.312 Prob(JB): 0.746
Kurtosis: 2.530 Cond. No. 922.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.740
Model: OLS Adj. R-squared: 0.714
Method: Least Squares F-statistic: 28.51
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.40e-06
Time: 22:56:42 Log-Likelihood: -97.600
No. Observations: 23 AIC: 201.2
Df Residuals: 20 BIC: 204.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 408.0635 133.594 3.055 0.006 129.391 686.736
C(dose)[T.1] 60.8273 8.056 7.551 0.000 44.023 77.632
expression -36.7037 13.846 -2.651 0.015 -65.587 -7.820
Omnibus: 0.928 Durbin-Watson: 2.012
Prob(Omnibus): 0.629 Jarque-Bera (JB): 0.769
Skew: 0.100 Prob(JB): 0.681
Kurtosis: 2.127 Cond. No. 350.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:56:42 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.048
Method: Least Squares F-statistic: 1.752e-06
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.999
Time: 22:56:43 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 80.0375 241.926 0.331 0.744 -423.075 583.150
expression -0.0329 24.831 -0.001 0.999 -51.672 51.607
Omnibus: 3.315 Durbin-Watson: 2.489
Prob(Omnibus): 0.191 Jarque-Bera (JB): 1.572
Skew: 0.289 Prob(JB): 0.456
Kurtosis: 1.857 Cond. No. 330.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.166 0.301 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.504
Model: OLS Adj. R-squared: 0.369
Method: Least Squares F-statistic: 3.733
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0452
Time: 22:56:43 Log-Likelihood: -70.034
No. Observations: 15 AIC: 148.1
Df Residuals: 11 BIC: 150.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 317.0001 247.669 1.280 0.227 -228.117 862.117
C(dose)[T.1] -89.8582 342.211 -0.263 0.798 -843.061 663.344
expression -28.6093 28.361 -1.009 0.335 -91.032 33.813
expression:C(dose)[T.1] 15.5519 39.765 0.391 0.703 -71.970 103.074
Omnibus: 2.403 Durbin-Watson: 0.811
Prob(Omnibus): 0.301 Jarque-Bera (JB): 1.621
Skew: -0.785 Prob(JB): 0.445
Kurtosis: 2.644 Cond. No. 511.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.498
Model: OLS Adj. R-squared: 0.414
Method: Least Squares F-statistic: 5.943
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0161
Time: 22:56:43 Log-Likelihood: -70.137
No. Observations: 15 AIC: 146.3
Df Residuals: 12 BIC: 148.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 247.9889 167.545 1.480 0.165 -117.060 613.038
C(dose)[T.1] 43.8248 15.828 2.769 0.017 9.338 78.311
expression -20.6983 19.165 -1.080 0.301 -62.455 21.059
Omnibus: 2.222 Durbin-Watson: 0.755
Prob(Omnibus): 0.329 Jarque-Bera (JB): 1.506
Skew: -0.754 Prob(JB): 0.471
Kurtosis: 2.629 Cond. No. 195.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:56:43 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.177
Model: OLS Adj. R-squared: 0.113
Method: Least Squares F-statistic: 2.789
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.119
Time: 22:56:43 Log-Likelihood: -73.842
No. Observations: 15 AIC: 151.7
Df Residuals: 13 BIC: 153.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 414.5144 192.338 2.155 0.050 -1.006 830.035
expression -37.3729 22.378 -1.670 0.119 -85.718 10.972
Omnibus: 0.746 Durbin-Watson: 1.323
Prob(Omnibus): 0.689 Jarque-Bera (JB): 0.731
Skew: 0.351 Prob(JB): 0.694
Kurtosis: 2.178 Cond. No. 182.