AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.000 | 0.983 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.595 |
Method: | Least Squares | F-statistic: | 11.77 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000139 |
Time: | 05:00:06 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 32.4812 | 121.459 | 0.267 | 0.792 | -221.735 286.698 |
C(dose)[T.1] | 96.9249 | 182.013 | 0.533 | 0.601 | -284.032 477.882 |
expression | 3.1516 | 17.595 | 0.179 | 0.860 | -33.676 39.979 |
expression:C(dose)[T.1] | -6.1958 | 25.790 | -0.240 | 0.813 | -60.174 47.783 |
Omnibus: | 0.248 | Durbin-Watson: | 1.876 |
Prob(Omnibus): | 0.884 | Jarque-Bera (JB): | 0.438 |
Skew: | 0.110 | Prob(JB): | 0.803 |
Kurtosis: | 2.361 | Cond. No. | 372. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 05:00:06 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 52.3630 | 86.782 | 0.603 | 0.553 | -128.661 233.387 |
C(dose)[T.1] | 53.2602 | 9.483 | 5.616 | 0.000 | 33.479 73.041 |
expression | 0.2677 | 12.557 | 0.021 | 0.983 | -25.927 26.462 |
Omnibus: | 0.302 | Durbin-Watson: | 1.891 |
Prob(Omnibus): | 0.860 | Jarque-Bera (JB): | 0.473 |
Skew: | 0.060 | Prob(JB): | 0.789 |
Kurtosis: | 2.308 | Cond. No. | 143. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:00:06 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.096 |
Model: | OLS | Adj. R-squared: | 0.053 |
Method: | Least Squares | F-statistic: | 2.219 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.151 |
Time: | 05:00:06 | Log-Likelihood: | -111.95 |
No. Observations: | 23 | AIC: | 227.9 |
Df Residuals: | 21 | BIC: | 230.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -110.8454 | 128.110 | -0.865 | 0.397 | -377.265 155.574 |
expression | 27.1019 | 18.194 | 1.490 | 0.151 | -10.734 64.938 |
Omnibus: | 4.004 | Durbin-Watson: | 2.364 |
Prob(Omnibus): | 0.135 | Jarque-Bera (JB): | 1.916 |
Skew: | 0.398 | Prob(JB): | 0.384 |
Kurtosis: | 1.832 | Cond. No. | 134. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.248 | 0.097 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.573 |
Model: | OLS | Adj. R-squared: | 0.457 |
Method: | Least Squares | F-statistic: | 4.924 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0209 |
Time: | 05:00:06 | Log-Likelihood: | -68.915 |
No. Observations: | 15 | AIC: | 145.8 |
Df Residuals: | 11 | BIC: | 148.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 224.1356 | 129.410 | 1.732 | 0.111 | -60.693 508.964 |
C(dose)[T.1] | 132.4796 | 223.940 | 0.592 | 0.566 | -360.408 625.367 |
expression | -19.2374 | 15.833 | -1.215 | 0.250 | -54.086 15.612 |
expression:C(dose)[T.1] | -12.1358 | 28.633 | -0.424 | 0.680 | -75.157 50.885 |
Omnibus: | 2.987 | Durbin-Watson: | 0.501 |
Prob(Omnibus): | 0.225 | Jarque-Bera (JB): | 2.191 |
Skew: | -0.898 | Prob(JB): | 0.334 |
Kurtosis: | 2.470 | Cond. No. | 304. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.566 |
Model: | OLS | Adj. R-squared: | 0.494 |
Method: | Least Squares | F-statistic: | 7.831 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00666 |
Time: | 05:00:06 | Log-Likelihood: | -69.036 |
No. Observations: | 15 | AIC: | 144.1 |
Df Residuals: | 12 | BIC: | 146.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 254.3643 | 104.226 | 2.441 | 0.031 | 27.276 481.452 |
C(dose)[T.1] | 37.8044 | 15.327 | 2.466 | 0.030 | 4.409 71.199 |
expression | -22.9483 | 12.733 | -1.802 | 0.097 | -50.692 4.795 |
Omnibus: | 2.507 | Durbin-Watson: | 0.512 |
Prob(Omnibus): | 0.285 | Jarque-Bera (JB): | 1.918 |
Skew: | -0.796 | Prob(JB): | 0.383 |
Kurtosis: | 2.269 | Cond. No. | 121. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:00:06 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.346 |
Model: | OLS | Adj. R-squared: | 0.296 |
Method: | Least Squares | F-statistic: | 6.886 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0210 |
Time: | 05:00:06 | Log-Likelihood: | -72.112 |
No. Observations: | 15 | AIC: | 148.2 |
Df Residuals: | 13 | BIC: | 149.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 376.6086 | 108.138 | 3.483 | 0.004 | 142.990 610.228 |
expression | -35.9009 | 13.681 | -2.624 | 0.021 | -65.458 -6.344 |
Omnibus: | 2.890 | Durbin-Watson: | 1.377 |
Prob(Omnibus): | 0.236 | Jarque-Bera (JB): | 1.117 |
Skew: | -0.085 | Prob(JB): | 0.572 |
Kurtosis: | 1.674 | Cond. No. | 106. |